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A B S T R A C T

Cycles are widely considered to be an important feature of environmental and human history over the last
50,000 years. However, there is an overlooked problem in the investigation of cyclicity in this time period—the
standard statistical methods for identifying cycles assume that observations are precisely dated, but the main
relevant dating technique, radiocarbon dating, often yields dates with large and highly irregular uncertainties.
Here, we present the results of a massive simulation study that explored the impact of radiocarbon dating
uncertainty on our ability to identify cycles in time-series. Our results suggest there is indeed a problem. We
found that, at best, we could correctly identify known cycles only 42% of the time and that the false-positive rate
was as high as 90%. This indicates that an individual analysis of a single time-series is very likely to return false-
positive cycles. One implication of this is that many of the environmental and sociopolitical cycles that have
been identified may not be real. Consequently, a program of reassessment is needed.

1. Introduction

Cyclicity is an important concept in the study of the last
50,000 years. Numerous cyclical phenomena have been identified in
the recent history of Earth's climate, including Dansgaard-Oeschger
Events, Heinrich Stadials, and Bond Cycles (Bianchi and McCave, 1999;
Bond, 1997; deMenocal, 2000; Desprat et al., 2003; Hu, 2003; Langdon
et al., 2003; Moreno et al., 2005; Sorrel et al., 2012). Cycles are also
widely thought to be an important feature of human history
(Collingwood, 1927; Gavrilets et al., 2010; Gronenborn et al., 2014;
Redman and Kinzig, 2003; Rosen and Rivera-Collazo, 2012; Sandoval,
1998; Thompson and Turck, 2009; Turchin and Nefedov, 2009; Zhang
et al., 2006; Zimmermann, 2012). For example, both the Classic Maya
and the ancient Mesopotamians have often been said to have experi-
enced sociopolitical cycles (Hodell et al., 2005; Marcus, 1992; Masson,
2012; Ur, 2010).

Identifying environmental and sociopolitical cycles normally in-
volves time-series analysis. A time-series is simply a sequential set of
observations where the chronological arrangement of the observations
is important (Koopmans, 1974). Most established statistical methods of
searching for cycles in time-series draw on Fourier Theory, which holds
that any continuous function of real numbers can be decomposed into
sums of sine and cosine waves (Koopmans, 1974). In practice, most
established time-series methods involve fitting a set of waves with

different frequencies to a time-series either directly with regression or
via the Fast Fourier Transform. The frequencies that account best for
the variance in a given time-series are deemed to represent important
cycles.

It is usually assumed that standard time-series methods can be used
straightforwardly to identify cyclical patterns in palaeoenvironmental
and archaeological time-series (e.g., Bianchi and McCave, 1999; Bond,
1997; deMenocal, 2000; Desprat et al., 2003; Hodell et al., 2005).
However, this assumption is problematic in relation to time-series from
the last 50,000 years. The problem is that most such time-series are
dated with the radiocarbon method and radiocarbon dating often yields
large and highly irregular uncertainties (Telford et al., 2004)(e.g.,
Fig. 1). This is because radiocarbon dates have to be calibrated to ac-
count for the through-time variation in the atmospheric 14C/12C ratio
(Buck et al., 1996), and the calibration curve contains fluctuations and
plateaus that cause a radiocarbon year to correspond to multiple ca-
lendar years with similar probabilities. One of the effects of multi-
modal, highly skewed uncertainties is that the amount of time between
observations in a given time-series will be uncertain. This uncertainty
means multiple waveforms with different frequencies can fit equally
well, making it difficult to securely identify cycles.

To date, the impact of impact of calibrated radiocarbon dates on
time-series analysis has not been investigated. The significance of
chronological uncertainty for time-series analysis has been recognized

https://doi.org/10.1016/j.palaeo.2018.06.002
Received 7 March 2018; Received in revised form 29 May 2018; Accepted 1 June 2018

⁎ Corresponding author.
E-mail address: mcollard@sfu.ca (M. Collard).

Palaeogeography, Palaeoclimatology, Palaeoecology 506 (2018) 22–29

Available online 03 June 2018
0031-0182/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00310182
https://www.elsevier.com/locate/palaeo
https://doi.org/10.1016/j.palaeo.2018.06.002
https://doi.org/10.1016/j.palaeo.2018.06.002
mailto:mcollard@sfu.ca
https://doi.org/10.1016/j.palaeo.2018.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.palaeo.2018.06.002&domain=pdf


by some researchers, but the specific impact of radiocarbon dating
uncertainty has not been examined. For example, in 2009 Mudelsee and
colleagues updated their seminal computer software for identifying
cycles in palaeoclimate records—REDFIT—to account for general
chronological uncertainty, but they did not explore the impact of
radiocarbon dating uncertainty on the new software. A few years later,
Mudelsee (2014) showed that chronological uncertainty in general can
lead to incorrect estimates of confidence intervals in a wide range of
time-series methods, including common frequency-based ones, but did
not discuss the specific problems caused by radiocarbon dates. In a si-
milar vein, Martinez et al. (2016) looked at the impact of stratigraphic
uncertainty on frequency-based time-series analysis but did not ex-
amine the problems introduced by the use of radiocarbon dating to
generate age-depth models. More recently, Franke et al. (2018) in-
troduced a Bayesian frequency-based time-series method in an attempt
to account for chronological uncertainty, but these authors also did not
explore the impact of the multimodality associated with calibrated
radiocarbon dates on cycle identification.

With the foregoing in mind, we carried out a study in which we used
massive simulation experiments to assess the error rates that can be
expected when searching for cycles in frequency-based time-series
dated with calibrated radiocarbon dates (i.e. a statistical power ana-
lysis). The experiments involved the creation of synthetic time-series
with the same basic features as the main type of time-series used in
palaeoenvironmental and archaeological research—sets of ratio ob-
servations dated with a sample of radiocarbon dates. The synthetic
time-series can be thought of as, say, artificial temperature proxy re-
cords or artificial estimates of population density derived from room
counts. They comprised a simple sine wave and autocorrelated noise
with 300 observations spanning 1000 years. Each time-series contained
five, ten, or 40 complete cycles—i.e., oscillations—of the synthetic sine
wave, which determined the frequency range of the wave. The number
of oscillations is important because it affects the statistical significance
of the results. More oscillations in a given time-series means that the
wave should be easier to identify given a sufficient sampling rate (up to
the Nyquist limit [Bloomberg, 2000]) making the evidence for a given
cycle more compelling. Five, ten, and 40 oscillations were selected to
reflect typical radiocarbon-dated time-series used in palaeoenviron-
mental and archaeological research (Table S1). In the experiments, we
sought to recover the frequency of the known sine waves given different
degrees of uncertainty.

2. Materials and methods

We conducted the experiments in the R statistical computing en-
vironment (R Core Team, 2017). The experiments explored how several
variables affect statistical power—i.e., the ability to identify the known
sine waves in our synthetic time-series (see Supplementary Information
for R scripts). Each experiment involved four variables: 1) the amount
of noise; 2) the number of oscillations of the wave; 3) the number of
simulated radiocarbon dates; and 4) whether the dates for the time-
series were calibrated with a high-slope section of the radiocarbon ca-
libration curve or a low-slope section. These variables were chosen
because statistical time-series theory and research on radiocarbon-
dated age-depth models suggest they may affect the degree of chron-
ological uncertainty and the clarity of the cyclical pattern (Bloomfield,
2000; Telford et al., 2004; Franke et al. 2018). Details of the parameters
and their values are given in Table 1.

The simulation proceeded in several steps. First, we created 1000
synthetic time-series for each combination of parameters (Fig. 2). For
the purposes of this study, the specific values employed are not as
important as the relationships among the variables. The number of
cycles per unit time illustrates why this is the case. As long as the
sampling density is constant, 40 oscillations in 1000 years is the same as
400 oscillations in 10,000 years or four in 100 years. Even though the
specific values employed are not as important as the inter-variable re-
lationships, we selected parameter settings that are in line with data

Fig. 1. Examples of calibrated radiocarbon date distribution showing the highly
irregular nature of the errors—darker regions correspond approximately to the
68% highest density region (i.e., there is a 68% chance that one of the dates in
the shaded areas corresponds to the true calendar date).

Table 1
Simulation parameters.

Variable name Value(s)

Time-series length 300 observations
Timespan 1000 years
Autocorrelation coefficient 0.6
Complete oscillations 5, 10, 40
Frequencies 0.005, 0.01, 0.04 (oscillations per year)
Signal-to-noise ratio 1, 10, 100
Number of dates 5, 10, 15
Location on the calibration curve 12,000–13,000 cal. yr B.P.;

14,000–15,000 cal. yr B.P.

Fig. 2. Flowchart of the simulation process: pairing 1000 samples of a given
time-series cycle to simulated age-depth data.
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and problems relevant to palaeoenvironmental and archaeological re-
search (e.g., Carleton et al., 2014). We also ensured that the parameter
settings covered the range of variation we found among a selection of
palaeoenvironmental time-series available on the website of the Na-
tional Oceanic and Atmospheric Administration (www.noaa.gov; see
Table S1).

Each time-series comprised a simple sine wave and additive auto-
correlated or “red” noise. The red noise was created with an R function
called arima.sim() that generates realizations of an auto-regressive
process. The standard deviation of the noise process determined the
signal-to-noise ratio of the time-series.

Along with the simulated observations, we created a set of artificial
radiocarbon dates for each experiment. The dates were evenly spaced
along the calibration curve within one of two fixed segments—i.e.,
12,000–13,000 cal yr B.P. or 14,000–15,000 cal yr B.P. These segments
were chosen because the latter had roughly twice the slope of the
former (see Fig. 4), which allowed us to explore the effect of the cali-
bration curve's slope on the results. We set the error of the simulated
radiocarbon dates to± 50 years, which is a common magnitude of
uncertainty returned by radiocarbon dating labs. We used the same
error for all the dates in order to isolate the uncertainties introduced by
the calibration process.

In the second step of the simulation, we randomly sampled the ca-
librated date distributions of each time-series 2000 times (Fig. 3). This
yielded a total of 2,000,000 time-series per experiment. Any set of si-
mulated dates that violated the simulated stratigraphic relationships
among the dates was discarded. This makes the procedure we employed
equivalent to Bayesian calibration (Buck et al., 1996). Each sample of
dates was interpolated with a monotonic spline to provide a date for
each of the observations in a given time-series. We opted to use splines
because recent research indicates that they are the most stable, robust
type of age-depth model when radiocarbon dating is used (Telford
et al., 2004).

In the simulation's third step, we analyzed the time-series using

Least-Squares Spectral Analysis (LSSA), which is an established method
for finding cycles in unevenly spaced time-series (Lomb, 1976; Vaníček,
1971). Equivalent to the well-known Lomb-Scargle method (Bretthorst,
2003; Lomb, 1976), LSSA potentially has broad applicability to pa-
laeoenvironmental and archaeological time-series because of its ability
to cope with unevenly spaced data. Like other methods for finding
cycles, LSSA produces a frequency spectrum—i.e., a plot with peaks
identifying the frequency of waveforms that might be present in a given
time-series. In contrast to most other spectra, however, a Least-Squares
spectrum indicates the correlation of the fit between a wave at a given
frequency and the time-series under analysis. We compared the LSSA
spectra yielded by the synthetic time-series to an obvious benchmark
for statistical significance—a null frequency spectrum that reflects our
expectations about how a random time-series with no cycles would
appear. Importantly, the null spectrum had to account for auto-
correlation because environmental and sociopolitical processes are ty-
pically temporally autocorrelated, resulting in a red noise background
(Schulz and Mudelsee, 2002). We produced the null spectra by ana-
lyzing 1000 additional simulated time-series for each experiment.
These time-series contained no sine waves, only red noise created in the
same way as before. Using LSSA, we estimated a spectrum for each of
the 1000 red-noise-only time-series and then extracted the 95% quan-
tile of each frequency in the spectra. We identified peaks in the fre-
quency spectrum of a given time-series as statistically significant only if
they exceeded this 95% level, which is equivalent to the commonly
used p-value of 0.05. While a more stringent criterion would arguably
be better, the 0.05 threshold is still the most commonly used bench-
mark for statistical significance, making it appropriate for our study.
We allowed for a generous window of error by including any peaks in
the spectrum within±20% of the known frequency of the sine wave
used to create time-series. Peaks that fell within the window of error
were considered “hits”—i.e., true-positives.

Lastly, we collated the hits and plotted them, creating hit-rate dis-
tributions. The distributions illustrate the number of times a given
frequency was found to be significant for a given combination of si-
mulation parameters. Permuting all possible values for the four free
parameters resulted in 54 experiments. This required substantial high-
performance computing power involving more than a hundred pro-
cessors and several months of computational time.

3. Results and discussion

The experiments produced several results (Fig. 5 and S1-S5). Some
of them were unsurprising. For example, we found that increasing the
noise in the time-series led to more false-positive findings, and thatFig. 3. Flowchart of the simulation process: the radiocarbon date bootstrap.

Fig. 4. Calibration curve regions used in the simulation.
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more oscillations were easier to detect than fewer oscillations. Simi-
larly, we found that increasing the number of radiocarbon dates im-
proved the hit rates, and that experiments involving the low-slope
portion of the calibration curve produced greater numbers of false-po-
sitives. However, the hit rates and false-positive rates were surprising.
Specifically, they were surprisingly bad. Around two-thirds of the ex-
periments yielded hit rates of less than 10%, while the false-positive
rates reached 90% in two-thirds of the experiments despite specifying
the Type I error rate with a p-value significance threshold of 0.05. This
means that it is highly likely that an individual analysis of a single time-
series would yield false-positive cycles. Together, the hit rates and false-
positive rates suggest that chronological uncertainty substantially un-
dermines our ability to securely identify cycles in radiocarbon-dated
time-series when point estimates of the dates are used to build age-
depth models.

It is possible that the situation may be even worse than our ex-
periments suggest. First, as we noted earlier, we used a wide window of
error for counting a true-positive finding. The error window meant that,
for instance, the target period for a 25-year cycle was 25 ± 5 years. A
longer cycle of 200 years would have a window of 200 ± 40 years,
leaving a lot of room for different candidate cycles. Obviously a nar-
rower window of error would have made it harder to correctly identify
cycles.

Second, many real palaeoenvironmental and archaeological datasets
are likely much more complicated than a single waveform plus red-

noise. Real environmental and sociopolitical processes could con-
ceivably involve multiple cycles with various wavelengths. In such
cases, distinguishing between multiple cycles would be harder than
identifying a single cycle, especially if the overlapping cycles have si-
milar periods. Real environmental and sociopolitical processes might
also contain acyclic trends or rapid fluctuations—i.e., “jumps” that
occur over short intervals. Distinguishing cycles from these acyclic
trends and fluctuations would be more challenging than identifying
cycles in simple time-series like those in our simulation experiments.

Lastly, the highest hit rates we found were for experiments invol-
ving low noise levels. In the experiment with a 42% hit rate, the time-
series was almost a pure sine wave. Most real-world palaeoenviron-
mental datasets are substantially noisier because of chaotic climate
fluctuations and instrumentation error. The same holds for most ar-
chaeological datasets. So, for real-world applications we expect the
false-positive rate to go up and the true-positive rate to go down. Thus,
there is another reason to think that securely identifying unknown cy-
cles might be even less likely than our study suggests.

It seems like increasing the number of dates used to create age-
depth models should solve the problem. In theory, more dates should
mean less temporal uncertainty about the times associated with in-
dividual observations, and thus the time between observations in a
given series should be more certain, reducing the number of potential
waveforms that could fit the series. However, our results suggest the
situation is more complicated than that. While we found that increasing

Fig. 5. Significant frequencies identified in experiments involving 5 oscillations between 12,000 and 13,000 cal yr B.P. The vertical black lines denote the target
frequency. Signal-to-noise ratio varies among the panels vertically while the number of radiocarbon dates varies horizontally. The rest of the figures summarizing our
results are in the Supplementary Information.
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the number of dates improved the hit rates, the relationship between
numbers of dates and hit rates was weak. Increasing from 10 to 15
dates, for example, had only a small impact on hit rates across ex-
periments—the impact was, in fact, barely noticeable (see Fig. 5 and
Figs. S1–S5).

We suspect that the size of the improvement in hit rate might be
negligible because of the highly irregular nature of calibrated radio-
carbon dating uncertainty. Increases in date density might not produce
significant reductions in age-depth model uncertainty because typical
calibrated radiocarbon date distributions contain multiple modes, long

Fig. 6. Example of significant frequencies from a single LSSA
spectrum (top panel with the 95% confidence level shown as
a red line) and the distribution of significant frequencies
found during a radiocarbon-date bootstrap (bottom panel). In
the bottom panel, a Gamma distribution is drawn over the
histogram. The distribution parameters were estimated with
maximum likelihood methods from the pool of significant
frequencies. The vertical dash-dot line indicates the mode of
the Gamma distribution, which corresponds to the most
commonly occurring significant frequency; the vertical da-
shed line indicates the mean of the Gamma distribution; and
the red vertical line indicates the target frequency. (For in-
terpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. The distribution of modes for all 1000 simulated
time-series. The top panel is the empirical histogram. The
bottom panel shows a normal approximation of the dis-
tribution of modes with a vertical black line showing the
mean and the vertical dashed line showing the target fre-
quency. This distribution was estimated with maximum
likelihood methods, but it is clear that the empirical data are
skewed, which is why we opted not to use the approximation
in the bottom panel. It is shown here because it illustrates
the proximity between the target frequency and the mean of
the modes.
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plateaus, and marked skews. This irregular uncertainty leads to many
equally likely age-depth models with highly variable features over short
and long time-spans even with many dates acting as chronological
anchors. This type of variability can be expected to hinder statistical
convergence toward a single, true age-depth model even as the dating
density is increased—i.e., the chronological evidence will not necessa-
rily clearly indicate a single true model as we increase the number of
(highly irregular) chronological anchors. If this is the case, it may take a
very large number of additional radiocarbon dates before a noticeable
improvement in hit rates is achieved. This may not be the case with
dating methods that yield more regular uncertainties. While further
research is certainly required, our present findings indicate that for
moderate numbers of dates increasing the number of radiocarbon dates
is not sufficient to improve cycle identification.

Thankfully, our findings also suggest a way to at least partially
address the problem in another way. Recall that the hit-rate distribu-
tions represent pooled results from 2,000,000 individual frequency
analyses, each of which involved a single time-series with a set of dates
randomly sampled from the relevant calibrated date distributions.
These hit rate distributions (e.g., Fig. 5) are unimodal with peaks close
to the target frequencies. Significant frequencies around these peaks
occur more often than other frequencies, and the probability of a given
frequency appearing significant in our simulation declines with dis-
tance from these peaks. This means that, as the number of time-series
increases, a pooled estimate should converge to the modal frequency,
which is generally close to the target frequency, as we noted earlier.
Thus, while a frequency analysis of one time-series is likely to yield
significant numbers of false-positives and false-negatives, combining
results from multiple time-series should lead to a better estimate.

To evaluate this possibility, we ran a further experiment. The new
experiment involved a cycle with a frequency of 0.01 and 15 radio-
carbon dates. Instead of combining all of the results as we did before,
we looked at the distributions of significant frequencies for each of the
1000 simulated time-series. The distributions comprised the significant
frequencies identified during the radiocarbon-date bootstrap

simulations. We found that these distributions were also unimodal with
peaks reasonably close to the target frequency (Fig. 6). To determine
how many time-series would be required to estimate the target fre-
quency, we fit Gamma distributions to the significant frequencies
identified with the radiocarbon-date bootstrap. We then calculated the
mode of the Gamma distribution for each one, creating a list of 1000
modes. Each mode corresponded to the peak of the relevant distribution
of significant frequencies (Figs. 6 and 7). The distribution of modes was
close to Normal (Fig. 7), but did not pass the standard tests—it was left-
skewed. So, instead of using the normal approximations for sample size
given a margin of error, we simulated the sampling process from the list
of modes. We randomly sampled the list of modes with increasing
sample sizes ranging from two to 20. Each time we increased the sample
size, we randomly sampled the list of modes without replacement 1000
times. Then, we calculated the difference between the mean of each
sample and two values: 1) the mean of all modes, and 2) the target
frequency (Fig. 8).

The results of the new experiment were encouraging. They in-
dicated that increasing the number of time-series does indeed cause the
estimate of the target frequency to converge. As a corollary, the esti-
mate also closes in on the target frequency (Fig. 8, bottom panel). More
importantly, we were able to determine that around 10–12 time-series
would be required to estimate the population mean of modal fre-
quencies with approximately a 20% margin of error at the 95% con-
fidence level. Since our experiment involved a cycle with a frequency of
0.01, using 10 time-series to identify it would result in an estimate of
the target frequency that was between 0.008 and 0.012 roughly 95% of
the time. It would be possible to decrease the margin of error by in-
creasing the number of time-series, but as Fig. 8 shows, there would be
diminishing returns from doing so as the number of time-series required
increases rapidly.

Our estimate of the required number of time-series makes two
crucial assumptions. One is that the time-series in question are in-
dependently dated. Each of the 1000 time-series we simulated was
created as if it were independent. This is similar to measuring time-

Fig. 8. Empirically derived sample sizes (x-axis) required for
different margins of error (y-axis). These plots show the
margin of error (difference) between the mean of the modes
from a given sample and the mean of all modes (top panel) or
the target frequency (bottom panel). Each dot represents the
difference from a single sample of a given sample size, in-
dicated on the x-axis. The red line indicates the 95% con-
fidence level and the black horizontal line indicates ap-
proximately a 20% margin of error for a cycle with a
frequency of 0.01, or a period of 100 years. Both panels
clearly show that increasing the sample size (number of time-
series) leads to lower differences between the sample
mean—of modal significant frequencies—and the population
estimates. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of
this article.)
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series from 20 different sediment cores. The other assumption is that
there is only one significant cycle to find. Multiple cycles might produce
multiple modes and discerning these modes from one another and from
false-positives could be difficult. This is something that should be ex-
plored in future simulation work. Still, our results at least provide an
initial benchmark and suggest a practicable strategy for partially
overcoming the problems we identified with radiocarbon-dated time-
series.

With regard to other future research directions, as we explained
earlier, we created the synthetic time-series in such a way that they had
characteristics that are similar to those of several high-profile published
time-series (Table S1). Given this, an obvious implication of our study is
that a number of widely discussed cycles could be spurious. Our find-
ings suggest that the Type I error rates for statistical tests for significant
frequencies are much larger than the specified 0.05 when dealing with
realistic palaeoenvironmental and archaeological data. This implies
that our understanding of the past climate system may not be as good as
we have come to believe. The same holds for our understanding of
sociopolitical cycles. Consequently, there would appear to be a need to
re-analyze any radiocarbon-dated time-series that has been argued to
support a putative natural or cultural cycle using a simulation approach
capable of taking into account the impact of chronological uncertainty
on cycle identification.

4. Conclusions

The study reported here investigated the impact of chronological
uncertainty on our ability to the identify cycles in palaeoenvironmental
and archaeological datasets that are dated with radiocarbon dates.
Identifying cycles involves the use of time-series methods. These
methods assume that the target dataset is precisely dated, but this as-
sumption is often violated by radiocarbon-dated palaeoenvironmental
and archaeological datasets. This is because the calibration process that
is used to convert radiocarbon dates into calendar dates frequently
results in highly irregular uncertainties. To assess the scale of the pro-
blem, we conducted a set of massive simulation experiments that in-
volved estimating the statistical power of an established method for
identifying cycles in the face of calibrated radiocarbon date un-
certainty.

The experiments indicate that there is indeed cause for concern.
Around two-thirds of the experiments yielded hit rates of less than 10%,
while the false-positive rates reached 90% in two-thirds of the experi-
ments despite specifying the Type I error rate with a p-value sig-
nificance threshold of 0.05. Our results indicate that an individual
analysis of a single time-series would very likely yield false-positive
cycles. Together, the low hit rates and high false-positive rates suggest
that chronological uncertainty substantially undermines our ability to
securely identify cycles in radiocarbon-dated time-series when point
estimates of the dates are used to build age-depth models. The obvious
corollary of this is that many of the environmental and sociopolitical
cycles that are thought to be features of the last 50,000 years could well
be spurious.

The experiments allow us to make two recommendations for im-
proving the chances of finding cycles in future research. One is that
researchers should use multiple time-series. Our analyses demonstrated
that increasing the number of time-series representing a given historical
or climatic process improves our ability to correctly identify cycles, at
least under certain conditions. As the number of time-series increases, a
given analysis can be expected to converge to the modal frequency,
which our simulation suggests would likely be close to the true fre-
quency of a given cycle if it exists.

The other recommendation is to spread chronometric resources
across multiple time-series rather than investing heavily in dating a
single core. Specifically, we found that using more than 15 evenly
spaced dates per 1000-years made little difference to the results, which
could be used as a practicable benchmark for dating density. Utilizing

more dates did not improve our ability to find cycles enough to com-
pensate for the other common sources of uncertainty. Thus, if a project
has limited funding, it is probably better to gather multiple dated time-
series than a single time-series with a large number of dates.
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