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Abstract

Statistical time-series analysis has the potential to improve our understanding of human-

environment interaction in deep time. However, radiocarbon dating—the most common

chronometric technique in archaeological and palaeoenvironmental research—creates

challenges for established statistical methods. The methods assume that observations in a

time-series are precisely dated, but this assumption is often violated when calibrated radio-

carbon dates are used because they usually have highly irregular uncertainties. As a result,

it is unclear whether the methods can be reliably used on radiocarbon-dated time-series.

With this in mind, we conducted a large simulation study to investigate the impact of chrono-

logical uncertainty on a potentially useful time-series method. The method is a type of

regression involving a prediction algorithm called the Poisson Exponentially Weighted Mov-

ing Average (PEMWA). It is designed for use with count time-series data, which makes it

applicable to a wide range of questions about human-environment interaction in deep time.

Our simulations suggest that the PEWMA method can often correctly identify relationships

between time-series despite chronological uncertainty. When two time-series are correlated

with a coefficient of 0.25, the method is able to identify that relationship correctly 20–30% of

the time, providing the time-series contain low noise levels. With correlations of around 0.5,

it is capable of correctly identifying correlations despite chronological uncertainty more than

90% of the time. While further testing is desirable, these findings indicate that the method

can be used to test hypotheses about long-term human-environment interaction with a rea-

sonable degree of confidence.

Introduction

Time-series regression analysis is an important tool for testing hypotheses about human-

environment interaction over the long term. The primary sources of information about

human behaviour and environmental conditions in deep time are the archaeological and
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palaeoenvironmental records, respectively. These records contain observations with an inher-

ent temporal ordering and are thus time-series. This means time-series regression methods

could be used to quantitatively test hypotheses about the impact of climate change on humans

and other hominins, or conversely the impact of hominin societies on their environments.

However, there is reason to think that chronological uncertainty may complicate the use of

such methods. In particular, the chronological uncertainty associated with the most common

chronometric method used in the dating of both records—radiocarbon dating—could under-

mine our ability to confidently identify statistical relationships between the records. This is

because calibrated radiocarbon dates have highly irregular uncertainties associated with them,

and uncertainties of this type are not in line with the assumptions of many standard statistical

methods, including time-series analysis [1–5]. To investigate this possibility, we conducted a

simulation study in which we investigated the impact of radiocarbon dating uncertainty on a

time-series regression method that is well-suited for archaeological and palaeoenvironmental

research—the Poisson Exponentially-Weighted Moving Average (PEWMA) method [6].

Background

Time-series data have to be analyzed carefully because the order in the sequence of observa-

tions matters. There are two traits a time-series can have that make temporal ordering impor-

tant. One is non-stationarity, which describes time-series with statistical properties that vary

through time—e.g., the mean or variance of the series might change from one time to the next,

violating the common statistical assumption that observations are identically distributed [7].

The other troublesome trait is autocorrelation, which means the observations in the series cor-

relate with themselves at a given lag [7]. Autocorrelation leads to dependence among the

observations in a time-series, which violates another common statistical assumption, namely

that observations are independent.

Archaeological and palaeoenvironmental time-series typically have both traits [3,8,9]. They

will usually be non-stationary, because almost all environmental or cultural phenomena

change over time—e.g., yearly temperatures, or population demographics. They will also typi-

cally contain temporal autocorrelation. Thus, archaeological and palaeoenvironmental data

can be expected to violate the assumptions of many statistical methods. Consequently, we need

special methods to find correlations between past human and environmental conditions.

Fortunately, these methods already exist because statisticians, mathematicians, and engi-

neers have been working with non-stationary, autocorrelated time-series for a long time [10].

As a result, many established time-series methods are designed specifically to handle non-sta-

tionary, autocorrelated data [7,8,11]. However, time-series of archaeological and palaeoenvir-

onmental observations are idiosyncratic in another way that potentially undermines even

these established methods—often we are uncertain about the precise times associated with the

observations [12–14]. That is, the time-series contain chronological uncertainty.

Contemporary time-series, such as stock prices or daily temperatures, are usually recorded

at precisely known times, but looking into the deep past entails significant chronological

uncertainty. Archaeologists and palaeoenvironmental scientists usually make chronometric

estimations by proxy using radiometric methods that rely on measuring isotopes of unstable

elements that decay at a constant rate [15]. Even the most precise of these methods, however,

yield uncertain dates, some with decadal error ranges and others with centennial or millennial

error ranges. Consequently, many palaeoenvironmental and archaeological time-series con-

tain temporal uncertainty.

The most common chronometric method, radiocarbon dating, is particularly problematic.

Radiocarbon dates have to be calibrated to account for changes in isotope ratios through time.
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The calibration process results in chronometric errors that are often highly irregular, yielding

ranges of potential dates spanning many decades or even centuries [4,5,16,17]. Point estimates

—i.e., mean ages—cannot be used to describe these distributions because they often contain

multiple modes and are highly skewed [4,5]. Most statistical methods are, therefore, under-

mined by calibrated radiocarbon dating because most methods rely, at least to some extent, on

point estimates. Time-series methods are no different, raising concerns about our ability to use

them for identifying correlations between archaeological and palaeoenvironmental time-

series.

In the study reported here, we explored the impact of chronological uncertainty on a time-

series regression method called the Poisson Exponentially Weighted Moving Average

(PEWMA) method [6]. Classified as a state-space time-series method, the PEWMA method

models physical and natural systems as a set of input and output variables. It can be thought of

as a mathematical filter that takes input variables and produces outputs by estimating the rela-

tionships among the variables. As the name implies, the PEWMA algorithm estimates a regres-

sion model for Poisson processes—i.e., a process that produces a series of integer numbers.

Importantly, the method accounts for autocorrelation and non-stationarity in the Poisson pro-

cess. It is potentially useful for many archaeological and palaeoenvironmental applications

because count data is common in these fields—e.g., counts of artifacts, sites, or first appearance

dates of species in the fossil record.

Like other state-space models, the PEWMA model has two main parts. The first is called

the measurement equation. Brandt et al. [6] define this as

p ytjmtð Þ ¼
m
yt
t e� m

yt!
;

where

mt ¼ m�t� 1
eXtd

and

m�t� 1
� Gðat� 1; bt� 1Þ:

The measurement equations represent the observed count data as outcomes of a sequence

of Poisson random variables. Each observation, y, is dependent on the unobserved mean of the

Poisson process, μt, at time t. The unobserved mean of the Poisson process, μt, is, in turn,

dependent on the mean at the pervious time, m�t� 1
. The previous mean is not merely a lagged

value, though, which is why the asterisk is used. Instead, it is specified by a Gamma distributed

prior denoted in the third equation by Γ, which has two parameters at-1 and bt-1 corresponding

to the shape and rate of the distribution, respectively. The unobserved mean at time t is also

dependent on the regression term eXtδ where X
t is a matrix of covariates and δ is a vector of

regression coefficients that is estimated from the data.

The second part of the PEWMA state-space model is called the transition equation. Brandt

et al. [6] define the transition equation as

mt ¼ ertm�t� 1
Zt;

where

Zt � bðoat� 1; ð1 � oÞat� 1Þ:

These equations characterize the change in the unobserved mean through time. The first

equation defines the mean at a given time, and has three terms. The first of these, ert , describes
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the base rate of the mean process and ensures that the mean is always positive, which is neces-

sary for Poisson processes. The second term, m�t� 1
, is the mean at the previous time—though, as

we stated above, it is specified by a Gamma distributed prior and not merely a lagged mean

value. To be consistent with the measurement equations, we added an asterisk to the term,

making it slightly different from Brandt et al.’s [6] notation. The third term, ηt, describes the

stochastic shift in the mean from one time to the next. This term is Beta distributed, denoted

in the second equation by β. It is defined by the two standard Beta parameters and a weight,

ω, that discounts earlier observations exponentially—hence the “Exponentially Weighted”

part of the PEWMA acronym. The ω parameter accounts for autocorrelation in the PEWMA

model, and is estimated from the data. The parameters that appear in the Gamma and Beta dis-

tributions are also estimated from the data. Brandt et al. [6] calculate these parameters using

recursive equations for a and b and a maximum likelihood approach. Online R scripts for esti-

mating PEWMA models have been provided by Brandt et al. [6] (www.utdallas.edu/~pbrandt/

pests/pests.htm).

To the best of our knowledge, the PEWMA method has only been used to analyze past

human-environment interaction in one study [18]. In that study, we tested the prominent

hypothesis that climate change exacerbates conflict within and between human societies over

the long term (e.g., [19,20]). To test the hypothesis, we compared a time-series of Classic Maya

conflict levels to several palaeoenvironmental proxies. The time-series of interest was a histori-

cal record of conflict events inscribed into monuments along with Classic Maya Long Count

calendar dates. The conflict events include mentions of violent attacks, captive taking, human

sacrifices, deliberate destruction of monuments, and large coordinated attacks timed to coin-

cide with astronomical events [21,22]. Classic Maya elites had these events inscribed on monu-

ments like door lintels in temples, stairways on pyramids, and most importantly large stone

stelae [23]. The inscriptions describing these events generally include the date of the event in

question, information about the nature of the event—e.g., the ruler of Caracol, a major centre,

“decapitates/attack holy Mutal ajaw [a divine king connected to Tikal, another major cen-

tre]”—and the names of the relevant polities. Though not necessarily indicative of warfare in

the modern sense, changes in the number of these events throughout the Classic Period likely

indicates changes in the overall level of conflict among polities [18]. To create a time-series of

these events, we counted the number of conflicts per 25-year period from 350–900 CE. The

size of the interval was chosen to be consistent with earlier research, but we explored changing

the size of the interval in subsequent analyses and obtained results that were consistent with

those yielded by the main analyses (see the supplementary material associated with [18]).

Using the PEWMA method, we compared the conflict record with five palaeoenviron-

mental records including two temperature and three rainfall proxies. The temperature proxies

are sea surface temperature (SST) reconstructions for the summer and winter seasons in the

Cariaco Basin [24]. These records show an increase in SST over the Classic Maya period that

correlate with other circum-Caribbean records over the same period. They also positively cor-

relate with air temperature readings in the central Maya region during the 20th century (see

the supplementary material associated with [18]). The rainfall proxies included a titanium con-

centration record from the Cariaco Basin [25], an oxygen isotope record from a speleothem in

southern Belize [21], and the well-known sediment density record from Lake Chichancanab

located in the center of the Yucatan Peninsula [26]. In contrast to previous research on Classic

Maya conflict [21], we found that temperature was the only variable that correlated signifi-

cantly with conflict levels. We found no evidence for an impact of rainfall. From this, we con-

cluded that increases in temperature might have led to increases in conflict among the Classic

Maya, an idea not previously explored in the scholarly literature pertaining to the Classic

Maya.

Dating uncertainty and PEWMA
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As the foregoing study suggests, the PEWMA method has the potential to improve our

understanding of past human-environment interaction. However, given the ubiquity of chro-

nological uncertainty in archaeological and palaeoenvironmental time-series, there is a need to

better understand how chronological uncertainty affects the method—especially radiocarbon

dating uncertainty, which is highly irregular, as we explained earlier.

To explore the effect of chronological uncertainty on the PEWMA method, we carried out

a series of simulation experiments. The experiments involved creating thousands of pairs of

artificial palaeoclimatic and archaeological time-series with known relationships and then test-

ing for those relationships with the PEWMA method. The regressions were set up with the

synthetic archaeological time-series as the dependent variable and the synthetic palaeoenviron-

mental time-series as the independent variable. We used error-free dates for the artificial

archaeological time-series so that we could limit the sources of error and see the effects more

clearly. This analytical control also had the benefit of allowing us to compare the simulation

results to our previous work on the Classic Maya because the dependent variable in that study

was a historical record with little chronological uncertainty [18]. Thus, in the present study

only the synthetic palaeoenvironmental time-series contained chronological uncertainty.

Using a bootstrap approach [27], we resampled the set of synthetic calibrated radiocarbon

dates used to date the palaeoenvironmental time-series thousands of times, running a separate

PEWMA analysis each time. For each experiment we varied several parameters while keeping

everything else constant. The parameters included the variance of the time-series, the number

of synthetic radiocarbon dates, and the strength of the correlation between the artificial

archaeological time-series and the synthetic palaeoenvironmental data. Varying these parame-

ters allowed us to see how radiocarbon dating uncertainty in the palaeoenvironmental series

affected our ability to find the known relationships between the time-series in each pair.

Methods

Using the R statistical programming language [28], we ran a series of simulation experiments,

each of which explored how a set of variables affected the outcome of a PEWMA regression

analysis. To reiterate, the PEWMA algorithm is a special kind of time-series filter that can be

used to model Poisson processes containing autocorrelation and non-stationarity [6]. Poisson

processes produce integer count time-series [29], a very common type of time-series in archae-

ology, as noted earlier—e.g., counts of sites per century or counts of animal bones per strati-

graphic layer and so on. To model an empirical time-series, the PEWMA algorithm uses an

observe-then-predict mechanism, which as the phrase suggests involves first observing some

data and then making a prediction based on that observation. It filters through a given count

series one observation at a time, updating its predictions for the next time based on previous

observations. It can account for autocorrelation in the count data by discounting the informa-

tion from older observations as it filters through the series. More discounting implies less auto-

correlation in the observed data because older values in the series have a lower impact on

subsequent values. The algorithm can also be fed covariates to see whether they improve its

predictions of the time-series of interest. To estimate the statistical parameters for a model, the

algorithm uses maximum likelihood, which means we can use Akaike’s Information Criterion

(AIC), a measure of information loss, to estimate the goodness of fit of a given model [30–32].

Models with a lower AIC involve less information loss, meaning they fit the observed time-

series better. The AIC we used is formulated as

AIC ¼ ð� 2 � LÞ þ ð2 � kÞð Þ �
N

N � k � 1
;

Dating uncertainty and PEWMA
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where L is the log-likelihood of the model, k is the number of covariates, and N is the number

of observations in the time-series. This formula is a small sample size-corrected version of the

AIC, which is generally appropriate for archaeological research given the small numbers of

observations typical of archaeological time-series.

In the simulations, we aimed to determine how calibrated radiocarbon date uncertainty

affects the PEWMA model. Specifically, we sought to investigate the impact of radiocarbon

date uncertainty on the PEWMA method when it is used to identify correlations between a

calendrically-dated archaeological time-series and a radiocarbon-dated palaeoenvironmental

time-series. To do so, we ran a massive simulation. The simulation was broken down into

experiments. Each experiment involved a set of fixed parameters that were the same for every

experiment and a set of variable, or free, parameters that we wanted to investigate. Within

each experiment, 1000 pairs of synthetic time-series were analyzed using the PEWMA algo-

rithm. We refer to these as the top-level pairs. Each top-level pair was subjected to a chronolog-

ical bootstrap—i.e., random sampling of the radiocarbon date distributions used to date the

synthetic palaeoenvironmental time-series—which resulted in 2000 sub-pairs of time-series.

Each sub-pair only differed from the others because different dates were used to create their

age-depth models.

The experiments involved several steps. First, we created 1000 synthetic palaeoenvironmen-

tal time-series spanning a thousand-year period, from 12000 to 13000 calibrated years BP, a

fixed parameter of the experiments. This slice of the curve was chosen because it has a moder-

ate amount of chronological uncertainty relative to older and younger periods, meaning our

results should be relevant to a wide range of archaeological research. We created the observa-

tions in each series using a linear function with a slope of 0.01, also a fixed parameter. This

function was chosen to simulate an environmental process that increased gently over the

1000-year period of the series—i.e., a synthetic environmental signal. We then added autocor-

related random error with a fixed autocorrelation of 0.7, creating noise in the synthetic envi-

ronmental signal. The autocorrelated noise was generated using an R function called arima.

sim. This autocorrelated component caused the linear signal to increase and decrease in a non-

linear fashion, mirroring the kind of variation commonly seen in palaeoenvironmental time-

series. In each experiment, we controlled the amount of noise by tuning the standard deviation

of the arima.sim function. The standard deviation could vary freely among three values,

namely 1, 0.1, and 0.01. Increasing the standard deviation increased the level of noise, thereby

decreasing the signal-to-noise ratio of the synthetic palaeoenvironmental observations—i.e.,

the variance of the autocorrelated noise increased relative to the variance of the signal. We

then dated the observations by selecting radiocarbon dates from the INTCAL-13 calibration

curve from 12000–13000 BP [33]. There could be five, 15, or 25 dates evenly spaced along the

calendrical time axis of the curve. This parameter was intended to help us determine whether

having more dates improved regression results. To derive dates in radiocarbon time, we looked

up the radiocarbon dates in the curve that corresponded to the calendrical dates, a process

sometimes called back-calibration. These back-calibrated dates became the synthetic radiocar-

bon assays for the time-series. They stood in for the uncalibrated radiocarbon measurements

that we might receive from a dating lab in a real investigation. We then set the error of the sim-

ulated radiocarbon dates to a standard deviation of ± 50 years, a fixed parameter correspond-

ing to a common magnitude of error returned by dating labs. Setting these errors to a constant

value was necessary to isolate the errors introduced by calibration—i.e., the irregular uncer-

tainties we were interested in.

In the second step, we created 1000 synthetic archaeological time-series using a PEWMA

filter in reverse. Instead of iterating over an existing count time-series to estimate its statistical

parameters, the algorithm can produce a time-series by feeding it a set of parameters. So, to

Dating uncertainty and PEWMA
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simulate an archaeological process that was affected by environmental conditions, we fed in

each of the synthetic environmental series created in the previous step. To do that, we sampled

each 1000-year environmental series 200 times at regularly spaced intervals and used them as

covariates in the creation of 1000 PEWMA count time-series, creating 1000 time-series pairs

(see Fig 1). By tuning the correlation parameter, we could test whether the strength of the cor-

relation between a given synthetic environmental time-series and its paired artificial archaeo-

logical time-series affected our results. To be clear, we were interested in how the strength of

Fig 1. Flowchart showing the creation of the 1000 top-level time-series pairs, each comprising one simulated PEWMA series and one simulated

palaeoenvironmental series.

https://doi.org/10.1371/journal.pone.0191055.g001
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the underlying correlation affected our ability to identify the underlying relationship in the

presence of chronological uncertainty. We were not trying to estimate its magnitude. The cor-

relation parameter varied among 0.75, 0.5, 0.25, and 0—the last of these indicated no correla-

tion, which allowed us to estimate the false positive error rate for the PEWMA method. The

PEWMA filter also has an autocorrelation parameter, which indicates the degree of persistence

in the underlying Poisson process—i.e., the degree to which future values are dependent on

previous ones. We fixed this parameter at 0.6 for the simulation, corresponding to the default

settings for Pests, the R software package written by the developer of the PEWMA method [6].

In the third step, we created 2000 age models for each of the 1000 synthetic environmental

series (see Fig 2). Most palaeoenvironmental time-series are dated with age models—i.e.,

mathematical interpolations between chronometric estimates anchored to certain parts of a

series [13,34]. The most common kind of age modeling involves sediment depths and radio-

carbon dates. To date a time-series of observations from a lakebed sediment core, for example,

palaeoenvironmental scientists interpolate between calibrated radiocarbon dates from a set of

radiocarbon samples at different depths along the core. The depth of the carbon sample and its

calibrated date become chronological anchors. By relating the age of the carbon sample to its

depth, the ages of the layers between the anchors can be estimated. To simulate this process,

while accounting for chronological uncertainty we used the bootstrap procedure, which is

a method for estimating statistical parameters or distributions by random sampling with

replacement [27]. The bootstrap involved calibrating the synthetic radiocarbon dates from the

first step using R and then randomly sampling the calibrated distributions. We sampled them

with replacement using a Gibbs sampler [16,35]—a tool that allowed us to randomly sample a

sequence of radiocarbon dates with the constraint that the order of the dates in the time-series

had to be preserved, mimicking stratigraphic relationships among them. Then, we used a

monotonic spline to interpolate between the sampled radiocarbon dates, assigning a time

stamp to each of the observations in a given synthetic environmental series.

In the last step of each experiment, we used the PEWMA method to create regression mod-

els with the synthetic archaeological time-series as dependent variables. For each archaeolog-

ical time-series, we created 2000 PEWMA models. In each model, a given archaeological series

was compared to one of the 2000 environmental series from its partner bootstrap ensemble.

Since each of the 1000 archaeological time-series was paired to an ensemble of 2000 boot-

strapped environmental time-series, we ran a total of 2,000,000 PEWMA analyses for each

experiment. In each analysis, a given synthetic environmental time-series was used as a covari-

ate for predicting its partner archaeological time-series. To determine whether including the

environmental series improved a given model, we created another PEWMA model for each

archaeological series that included only a constant and no covariate. The models with no en-

vironmental covariate acted as benchmarks for identifying statistically significant results. We

reasoned that if the AIC of a given model with an environmental covariate outperformed its

benchmark, the PEWMA algorithm had successfully identified the underlying correlation—

or, in the case of no underlying correlation, erroneously identified one. For each of the 1000

synthetic archaeological series, we had 2000 PEWMA results, which meant we could calculate

the percentage of the analyses that yielded a positive result—i.e., the hit rate. We then tallied

these percentages to create a distribution of hit rates for each experiment.

Results

Permuting all possible values for the free parameters yielded 36 experiments, the results of

which are shown in Figs 3–6. There are several important patterns in these results. The least

surprising result involves the correlation between synthetic environmental and archaeological

Dating uncertainty and PEWMA
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time-series. The correlation parameter had, by far, the clearest impact on hit rates. The method

generally had a hit rate of less than 50% when the correlation was 0.25. Depending on the val-

ues of the other parameters, the hit rate varied between 20 and 40%. But, when the correlation

increased to 0.5 or higher, the hit rate rose as high as 90% in experiments where the signal-to-

noise ratio (SNR) was 100. As the correlation increased, the modes of the hit rate distributions

increased and the variances generally decreased, meaning the method consistently performed

better in experiments with higher correlations. Thus, when the environmental impact was

greater, the PEWMA algorithm was better able to identify the underlying correlation despite

radiocarbon dating uncertainty. This is an unsurprising finding because, intuitively, stronger

relationships should be easier to identify.

Another unsurprising result involves the SNR. Holding the other parameters constant, we

found that increasing the SNR from 10 to 100 generally improved the hit rate. When the SNR

was 100, the PEWMA analysis was able to correctly identify the underlying correlation more

than 80–90% of time in experiments with correlations of 0.5 or 0.75. Dropping the SNR to 10,

though, reduced the hit rates. For the strongest correlation we explored—0.75—an SNR of 10

Fig 2. Flow chart showing the radiocarbon date bootstrap procedure and the creation of 2000 sub-pairs of time-series for the first pair of time-series

created in the previous step. The same procedure was repeated for each of the 1000 top-level pairs at the bottom of Fig 1, resulting in a total of 2,000,000

simulated pairs of time-series for each experiment.

https://doi.org/10.1371/journal.pone.0191055.g002

Fig 3. PEWMA simulation results; correlation = 0.

https://doi.org/10.1371/journal.pone.0191055.g003

Dating uncertainty and PEWMA

PLOS ONE | https://doi.org/10.1371/journal.pone.0191055 January 19, 2018 10 / 21

https://doi.org/10.1371/journal.pone.0191055.g002
https://doi.org/10.1371/journal.pone.0191055.g003
https://doi.org/10.1371/journal.pone.0191055


reduced the hit rate from greater than 80% to between 30% and 60%. For the lower correlation

values, the hit rate was similarly reduced, but the distribution was also spread out across a

greater range of values, indicating more variability in the hit rate as the SNR decreased. This

finding makes sense since the climate data would be noisier, leading to a less clear relationship

between the synthetic environmental series and the synthetic archaeological series.

Lowering the SNR further to 1 yielded what is, on the face of it, a counterintuitive result—

the hit rate improved somewhat. For example, in experiments where the correlation was 0.75,

reducing the SNR to 1 increased the mode of the hit rate distribution to more than 80%. This

seems to suggest that noisier environmental data made it easier to identify an underlying cor-

relation. However, the effect was caused by the fact that the autocorrelated noise we added to

the main climate signal was included in the creation of the synthetic archaeological count data.

So, increased environmental noise translated into increased noise in the archaeological data,

too. Thus, when the correlation of a given experiment was strong, the increased variance of the

environmental data resulted in higher overall co-variance of both time-series—both were

noisy but strongly correlated. Consequently, the primary mode of the hit rate distribution

shifted upward. Still, the hit rate distributions generally show higher variance as the SNR

decreases, even in experiments with high correlations, which is more in line with the expecta-

tion that more noise should make it harder to see underlying relationships. In addition, a sec-

ond mode appeared in the experiments with SNRs of 1 and correlations of 0.5 or 0.75. That

Fig 4. PEWMA simulation results; correlation = 0.25.

https://doi.org/10.1371/journal.pone.0191055.g004
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smaller secondary mode in the hit rate distributions was much lower, around 10% or less. It

indicates that the chances of failing to see the underlying correlation increased with very low

SNR values, even in experiments with high correlations. Consequently, the overall effect of

SNR values on the simulation was as expected, namely that more noise reduced the power of

the method.

One surprising result involves the false positive rate of the PEWMA method. By setting the

correlation of some experiments to zero, we were able to determine how often random varia-

tion resulted in spurious correlations. Overall, the modes of the hit rate distributions hovered

around 10%, irrespective of the experimental parameters. Thus, the most common false posi-

tive hit rate for the PEWMA method appears to be around 10%. This false positive rate was

lower than expected. Given the impact of radiocarbon dating uncertainty on other time-series

methods we have explored (e.g., [3]), we were expecting to see more spurious correlations. So,

a false-positive rate of about 10% seems very low and acceptable for archaeological applica-

tions. The hit rate distributions, however, are skewed to the right for experiments with higher

SNRs, indicating greater numbers of spurious correlations. This finding makes sense consider-

ing those experiments involve synthetic environmental series with a straight, clearly increasing

trend—i.e., strong signals with low noise. Holding that trend stable while allowing the syn-

thetic archaeological series to fluctuate around it increased the chances that the two would

align by chance. If, in contrast, the environmental series fluctuated more, we would expect to

Fig 5. PEWMA simulation results; correlation = 0.5.

https://doi.org/10.1371/journal.pone.0191055.g005
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see fewer hits because chance concordances would occur less often. This is what we see.

Decreasing the SNR led to noisier environmental series, which spuriously correlated with the

synthetic archaeological series less often. Despite the difference caused by the SNR, though,

the primary result is that the frequency of spurious correlations appears to have been low

throughout the simulation, around 10%, even after accounting for radiocarbon dating

uncertainty.

The last result is also surprising. It involves the number of radiocarbon dates. Surprisingly,

increasing the number of radiocarbon dates used to date the time-series above five had little

effect on the experimental hit rates compared to the other variables. Irrespective of the correla-

tion and signal-to-noise ratios, the distributions of hit rates were almost identical whether the

series were dated with five, 15, or 25 synthetic radiocarbon dates. So, from these results it

appears that increasing the number of radiocarbon dates above five is unlikely to affect the

accuracy of a PEWMA regression analysis even when using a bootstrap to account for dating

uncertainty. This is surprising given our previous experience with radiocarbon dating uncer-

tainty and its negative impact on time-series analyses. In a previous study [3], we determined

that radiocarbon dating uncertainty undermined an established method for identifying cycles

in time-series data. We found that radiocarbon dating errors led to the identification of spuri-

ous cycles in a drought proxy record from the Yucatan Peninsula, raising questions about the

utility of time-series methods for identifying cycles in archaeological and palaeoenvironmental

Fig 6. PEWMA simulation results; correlation = 0.75.

https://doi.org/10.1371/journal.pone.0191055.g006
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records. We anticipated similar findings for the present study, namely that radiocarbon dates

would be a very important factor likely to undermine the method. Thus, it is both surprising

and encouraging that varying the number of radiocarbon dates had little impact overall.

Discussion

Our simulation experiments yielded three main findings regarding the impact of radiocarbon

date uncertainty on the PEWMA method when it is used to identify correlations between a

count-based archaeological time-series and a radiocarbon-dated palaeoenvironmental time-

series:

1. The method’s true-positive rate ranges from 20–90%, with the most realistic rates being

between 30 and 50%.

2. The method’s false positive error rate is approximately 10%.

3. Increasing the number of radiocarbon dates used to date the time-series above five had no
noticeable effect on the true- or false-positive rates.

Taken together, the first two findings—a low false-positive rate and a moderate-to-high

true-positive rate—indicate that the PEWMA method is suitable for research on past human-

environment interaction. A low false-positive rate means we are reasonably unlikely to be

fooled into thinking correlations exist when they do not—i.e., the method has a high specificity,

a statistical term describing the rate of true-negative findings. A high specificity is ultimately

the most important trait when investigating long-term human-environment interaction

because spurious correlations abound in the real world and filtering out unlikely hypotheses is

an important part of scientific research. On the other hand, the wide range of true-positive

findings implies that we might miss important correlations because of chronological uncer-

tainty, especially when the climate data are very noisy or the underlying correlation is weak.

This is clearly a problem that should be addressed with more methodological work, but for

now the PEWMA method appears to be a good tool for testing hypotheses involving correla-

tions between palaeoenvironmental records and archaeological count data.

The third finding—that increasing the number of radiocarbon dates above five had no

effect on the simulation results—is counterintuitive, though, and requires further thought. We

initially expected that including more dates would markedly improve the true-positive rate

and decrease the false positive-rate. That did not happen. One possible explanation for the

counterintuitive relationship between dates and true-positive rates is that chronological uncer-

tainty is not relevant at all because using more dates seemed to have no impact on the results.

This possibility, however, can be dismissed by looking at the results of a single bootstrap itera-

tion. Recall that the simulation was broken down into experiments. Each experiment involved

a combination of simulation parameters that was constant throughout a given experiment.

Within each experiment, 1000 pairs of synthetic time-series were analyzed using the PEWMA

algorithm—the top-level pairs. Each top-level pair was subjected to a chronological bootstrap,

which resulted in 2000 sub-pairs of time-series. Each sub-pair only differed from the others

because different chronological anchors—i.e., dates sampled from calibrated radiocarbon date

distributions—were used to create their age-depth models. So, if chronological uncertainty

was irrelevant, we would expect the PEWMA analysis results to have been identical between

sub-pairs. That is, we would expect that the PEWMA method would either succeed or fail

100% of the time for a given top-level pair because the sub-pairs only differed due to chrono-

logical uncertainty. What we saw instead was that each top-level result was a fraction ranging

from zero to one, indicating the percentage of the 2000 sub-pairs for which the PEWMA
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method was able to identify the underlying correlation. Therefore, we can be sure that chrono-

logical uncertainty had an effect, which means that another explanation is required.

A more likely explanation, we think, is that chronological uncertainty has an effect, but it is

not as important as the other variables, namely the signal-to-noise ratio and the strength of the

underlying correlation. So, large differences in the signal-to-noise ratio and the strength of the

underlying correlation will mask the effect of chronological uncertainty to some degree. Con-

sequently, had we included chronological uncertainty in the archaeological time-series as well

as the palaeoenvironmental time-series, we might have seen a greater effect. To some extent,

therefore, these results should be considered relatively liberal, since archaeological time-series

generally do contain chronological uncertainty. In a similar vein, had we used an older portion

of the calibration curve or wider radiocarbon dating errors for the individual dates, we would

expect the utility of the model to decrease. Still, since the effect we see in the simulation results

is small, similar amounts of chronological uncertainty in the archaeological time-series, or

small differences in other chronological uncertainties, should only slightly decrease the true-

positive rate of the PEWMA method.

These findings have implications for our previous research on climate change and Classic

Maya conflict [18]. As we explained earlier, the present simulation study compliments our ear-

lier use of the PEWMA method for testing the hypothesis that climate change drove Classic

Maya conflict. As part of our earlier research we performed sensitivity tests of the PEWMA

method to account for various sources of bias. These tests indicated that our primary finding,

that increases in temperature corresponded to increases in conflict at the centennial scale, was

largely unaffected by temporal bias. However, it was a fairly limited evaluation of the PEWMA

method. The present simulation looked specifically, and more completely, at the effect of chro-

nological uncertainty in the palaeoenvironmental time-series by performing bootstraps to

evaluate a very large number of what-if scenarios. The results suggest that the PEWMA

method is robust to chronological uncertainty—in fact, chronological uncertainty appears to

be the least important of the parameters we investigated. In addition, the portion of the calibra-

tion curve we used in the simulation is much older than the Classic Maya period, meaning it

has greater chronological uncertainty associated with it. Even so, the simulation results suggest

that false positive findings are rare. Importantly, the false positive rate would decrease for

time-series spanning more recent periods because the chronological uncertainty in the calibra-

tion curve is lower over more recent periods as well. Thus, we can be more confident that our

findings in the Classic Maya case study were not the result of chronological uncertainty.

To appreciate the implications of our simulation results more generally, we can think in

terms of conducting blind analyses—i.e., real studies with no prior information about the exis-

tence, or non-existence, of an underlying relationship between human and environmental

conditions. Imagine setting out to conduct a real analysis with the PEWMA method. Our sim-

ulation suggests that having at least five to 10 radiocarbon dates per 1000 years for a given

palaeoenvironmental series is sufficient as long as those dates are spread fairly evenly through-

out the series. Spending resources on more dates would likely make little difference in the

results. This means, for instance, that most of the palaeoenvironmental time-series that are

readily available online have sufficient numbers of radiocarbon dates to create reliable

PEWMA models. The largest, and most popular, online source for palaeoenvironmental time-

series is the NOAA website (www.noaa.gov). Perusal of their catalogue revealed that many of

the time-series they curate come with more than five radiocarbon dates. Consequently, our

hypothetical analysis could involve the existing palaeoenvironmental data, and if we need to

gather a new dataset our chronometric costs would be low.

We could also be confident that our PEWMA analysis would be able to identify an impor-

tant relationship if it existed, at least much of the time. Correlations with coefficients of 0.25 or
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greater were recoverable at least 20% of the time, and correlations of 0.5 or greater were recov-

erable upwards of 90% of the time. Thus, failing to find a relationship could suggest that there

was no important relationship to find. If we hypothesized that rainfall variation, for instance,

was strongly correlated to the rise and fall of Classic Maya socio-political complexity, then the

PEWMA method should be able to identify such a relationship given a proxy time-series for

past rainfall and one for socio-political complexity. If it failed to identify a relationship, one

possible reason is that the correlation is quite low, at least according to our simulation results.

Failing to find such a correlation, then, might simply indicate that the underlying relationship

is not very important, falsifying the hypothesis that a strong relationship existed. On the other

hand, for low to moderate correlations the method could miss a true relationship 50% of the

time or more. A simple way to overcome this problem would be to test the hypothesis with

additional time-series since that would increase the chances of finding a true-positive correla-

tion. Therefore, with some replication we could be fairly confident in our findings.

It is important to keep in mind, though, that our simulations also imply that one in ten pos-

itive results might be spurious. There are at least two obvious ways to control for false positive

findings. One is to use a more stringent test for statistical significance. Since the PEWMA

method we used relies on comparing AICs to determine when a significant relationship has

been identified, we could change the baseline for significance from identifying AICs that are

strictly lower than a benchmark AIC to a baseline that required AICs to be lower by some pre-

determined amount, giving a confidence buffer of sorts. This is what we did in our previous

analysis on climate change and Classic Maya conflict [18], and we strongly recommend it in

general—though the specific size of the buffer is arbitrary and should be considered carefully

for any specific case. The other way to control for false positives would be to conduct replica-

tion studies. For the hypothetical blind analysis we would have to gather multiple archaeolog-

ical and palaeoenvironmental time-series containing observations of the same underlying

phenomena—e.g., multiple proxies for Classic Maya socio-political complexity and multiple

proxies for past rainfall. Then, we would re-run the PEWMA analysis and make a decision

about our hypothesis on the basis of multiple results taken together, instead of relying on a sin-

gle comparison. Overall, though, a false positive error rate of 1 in 10 seems acceptable for

archaeological research. Therefore, while we ought to make attempts to control for the false

positive findings, our simulation results suggest that the PEWMA method is adequate for

archaeological purposes. It has a 90% chance of correctly determining that no relationship

exists—i.e., a high specificity, as we mentioned earlier—if there is no underlying relationship

and only a 10% chance of spuriously identifying one.

Overall, our results indicate that the PEWMA method is a promising time-series analysis

tool for archaeological and palaeoenvironmental research. The method is suitable for analysing

any archaeological count time-series, which potentially includes a wide range of archaeological

proxies for past human behaviour, and it performs well even with relatively few radiocarbon

dates—only five dates for a time-series 1000 years long. Therefore, we can make use of many

of the published palaeoenvironmental time-series readily available online and maintain low

chronometric costs when gathering new data. The method can also reliably find moderate to

strong correlations between archaeological and palaeoenvironmental time-series when the lat-

ter have a strong signal. It should also be noted that leads and lags in a putative human-envi-

ronment relationship could be tested for in the usual way—i.e., by included lagged versions of

covariate time-series in the model. Thus, we think that the PEWMA method has the potential

to contribute substantially to research on past human-environment interaction.

There is one very important caveat to keep in mind, which is that the results yielded by

applications of the PEWMA method to archaeological time-series are assumption dependent.

Like most statistical techniques, the PEWMA model was created with a specific class of
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problems in mind and therefore makes certain assumptions about the data. While it appears

to be fairly robust to chronological uncertainty, it is best suited to cases where the count-

based archaeological data represent a past process that 1) contained autocorrelation; 2) had

temporal persistence that can be characterized adequately by exponential decay—e.g., the

influence of past conflict levels or population sizes diminished exponentially with the passage

of time; and 3) was subjected to temporally persistent effects from covariates. The last of

these traits is particularly important because the PEWMA model assumes a given process

was the product of its past states, which includes the previous impacts of any relevant covari-

ates. So, the effect of covariates persists through time. If, in contrast, a process is suspected to

have had covariates with only instantaneous impacts at any given time, then a PEWMA

model may not be appropriate. It is, therefore, important to be aware of what one is attempt-

ing to model before using the PEWMA method. It would be wise to use the diagnostics out-

lined in Brandt et al. (2000) to determine whether a PEWMA model is suited to a given

problem and dataset. It might also be useful to compare the PEWMA model results to other

models, perhaps using AIC.

There are at least three avenues to explore in future research. One involves looking at the

effect of calibrated radiocarbon date uncertainty on the dependent—i.e., response—variable.

We chose to focus on chronological uncertainty in the palaeoenvironmental data in order to

limit the sources of error in the simulation and see the effects of chronological uncertainty as

clearly as possible. However, most archaeological time-series will likely contain chronological

uncertainty, usually from radiocarbon dating. While we suspect the effect of additional radio-

carbon dating uncertainty in the response time-series to be small—since the overall effect of

chronological uncertainty appears to be small—it would still be prudent to investigate it fur-

ther. Future research should involve simulations that look at how the PEWMA method per-

forms when both the response and predictor time-series are dated with radiocarbon.

The second avenue for future research involves estimating the magnitude of an underlying

correlation in the presence of chronological uncertainty. Our experiment involved determin-

ing whether we could identify an underlying correlation. An obvious parameter to explore,

therefore, was the strength of that correlation, which we varied between experiments. The

bootstrap simulations resulted in a range of estimates of the magnitude of correlations between

the synthetic archaeological and palaeoenvironmental series. Clearly, it would be useful to use

the bootstrap estimates to produce a single estimate for the underlying magnitude. That mag-

nitude would indicate how important a given covariate was relative to other covariates, and it

would also allow us to estimate effect sizes—i.e., the size of the impact that a given covariate

had on the dependent archaeological time-series. However, combining the magnitude esti-

mates from the chronological bootstrap is not straightforward and would have been an ad hoc
exercise. In the future, we need to determine how best to combine the estimates while ensuring

that the confidence intervals are calculated correctly. This research will require statistical

development and further simulation work.

Lastly, it would be helpful to explore the impact of changing temporal scales on the

PEWMA method. In the study reported here, we effectively used an annual resolution for the

time-series, but often archaeological and palaeoenvironmental data have different resolutions.

Many modern palaeoenvironmental records boast annual resolutions, for example, while most

archaeological time-series will have much coarser resolutions. Consequently, we have to

change the resolution of one or both time-series in order to perform analyses. Future research,

therefore, should explore the effect of changing the resolutions of the independent and depen-

dent time-series to match each other. Exploring these two potential research avenues would

help us to determine the limits of the PEWMA method, a method with considerable potential

to deepen our insights into past human-environment interaction.
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Conclusions

Time-series analysis has considerable potential to improve our understanding of past human-

environment interaction. However, there is reason to think that its application could be under-

mined by the widespread reliance on calibrated radiocarbon dates for age-depth models. Cali-

brated radiocarbon dates have highly irregular uncertainties, as we mentioned earlier. These

highly irregular uncertainties potentially pose a significant problem because they undermine

the assumptions of standard statistical methods. With this in mind, we conducted a large sim-

ulation study in which we explored the effect of calibrated radiocarbon date uncertainty on a

potentially useful Poisson regression-based method for time-series regression, called PEWMA.

To test the effect of calibrated radiocarbon date error on the PEWMA method, we simulated

thousands of archaeological and palaeoenvironmental time-series with known correlations

and then analysed them with the PEWMA algorithm.

Our simulation experiments yielded three important findings. One is that the PEWMA

method was able to identify true underlying correlations between the synthetic time-series

much of the time. The true-positive rate for the method ranged from 20–90%, with higher

true-positive rates when the synthetic environmental series contained less noise and the

correlation between the time-series was stronger. Under the most realistic conditions, with

moderate noise levels and correlation strengths, the true positive rate was around 30–50%.

Decreasing the noise levels and increasing the correlation coefficients to 0.5 or 0.75 led to true

positive rates upwards of 90%. While it is not surprising that stronger correlations in less-

noisy data were easier to identify, it is important to be aware that the method might miss low

correlation relationships.

The second important finding is that the false positive error rate of the method is roughly

10%, on average. This is surprising because we were expecting the highly irregular chronologi-

cal errors of radiocarbon dates to warp the time-series in ways that could cause many spurious

correlations and therefore a high false positive rate. Instead, the 10% false-positive rate suggests

that finding spurious correlations is actually unlikely—in the context of archaeological

research at any rate.

The third, and perhaps most surprising finding, was that varying the number of radiocar-

bon dates used to date the time-series had no noticeable effect. The true-positive rates were

largely consistent whether five, 10, or 15 radiocarbon dates were used. This was surprising

because it seems like adding more dates should reduce chronological uncertainty by increasing

the number of chronological anchors for the age-depth models. Thus, we expected that more

dates would improve our ability to find underlying correlations. That increasing the number

of dates above five had no substantial impact on the true- or false-positive rates indicates that

the PEWMA method is fairly robust to chronological uncertainty.

Taken together, our findings indicate that the PEWMA method is a useful quantitative tool

for testing hypotheses about past human-environment dynamics. It can be used to determine

whether an underlying correlation exists between a calendrically-dated archaeological time-

series and a radiocarbon-dated palaeoenvironmental time-series. Crucially, it has a low false-

positive rate, a moderate-to-high true-positive rate, and it appears to be fairly robust to chro-

nological uncertainty. Methods with these traits are essential for analyzing archaeological and

palaeoenvironmental time-series, which is a vital part of understanding past human-environ-

ment interaction.
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