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Abstract Estimating body mass from skeletal material is a
key task for many biological anthropologists. As a result, sev-
eral sets of regression equations have been derived for cranial
and postcranial material. The equations have been applied to a
wide range of specimens, but several factors suggest they may
not be as reliable as generally assumed. Specifically, since
many of the equations were derived from small reference
samples using proxies for key variables and/or mean data,
the nature of the relationship between the skeletal variables
and bodymass has often not been adequately demonstrated. In
addition, few of the equations have been validated on known
samples, making their accuracy and precision uncertain.
Lastly, because no study has used cranial and postcranial

material from the same individuals, the two approaches have
never been systematically compared. The present study
responded to these issues by deriving new regression equa-
tions from cranial and postcranial material using a large sam-
ple of modern humans of known-mass and associated skeletal
variables measured from CT data. The equations were then
tested on an independent sample, also of known mass. The
results show that the newly derived equations estimate mass
more accurately than existing equations for most variables.
However, improvements were modest and accuracy rates
remained relatively low. In addition, variables that had previ-
ously been argued to be ideal predictors were not the most
accurate, and the current criteria used to assess equations did
not ensure reliability. Overall, the results suggest that body
mass estimates must be used cautiously and that further re-
search is required.

Keywords Biological anthropology . Bioarchaeology . Fossil
hominin . Osteology . Palaeoanthropology . Forensic
anthropology

Introduction

Bone-derived estimates of body mass play an important role
in biological anthropology. Such estimates are crucial for un-
derstanding the evolutionary history of humans and other
hominins (Damuth and MacFadden 1990; Delson et al.
2000). They are required to understand the adaptive strategies
of hominin species and to accurately compare features across
fossil groups (Frayer 1984; Wood and Collard 1999; Delson
et al. 2000; DeSilva 2011). Body mass estimates are also nec-
essary for interpreting the characteristics of individuals from
more recent periods, particularly in terms of growth and
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development, and health (Steckel and Rose 2002; Cohen and
Crane-Kramer 2007). Lastly, because body mass is a conspic-
uous individualizing feature and a potential influence on taph-
onomic processes, body mass estimation is increasingly being
used in forensic research (Suskewicz 2004; Rainwater et al.
2007; Agostini and Ross 2011; Byard 2012).

Over the last quarter of a century, regression analysis has
been the main method used to estimate body mass from skel-
etal remains. The most common approach has been called
“inverse calibration” (Konigsberg et al 1998) and involves
the regression of body mass on a skeletal variable in samples
of extant taxa to generate an equation with which to predict
mass in an unknown specimen (Ruff et al. 2012). The
resulting equations take the form Y=a+bX, where Y is
the estimated mass, X is the skeletal measurement, a is
the intercept of the regression line, and b is its slope.
The body masses of unknown specimens are estimated
by inserting the target individuals’ values for the skele-
tal variable into the equation.

Numerous equations for estimating body mass can be
found in the literature (Ruff et al. 1991; McHenry 1992;
Aiello and Wood 1994; Ruff 1994; Grine et al. 1995;
Kappelman 1996; Ruff et al. 1997, 2005; Auerbach and
Ruff 2004, Spocter and Manger 2007). To date, three sets of
equations have been derived for cranial variables (Aiello and
Wood 1994; Kappelman 1996; Spocter and Manger 2007).
Designed to address the paucity of associated postcranial re-
mains in the hominin fossil record and the difficulty of asso-
ciating such material to a given species, these equations have
been used to generate body mass estimates for a variety of
fossil hominin and primate specimens (Aiello and Wood
1994; Kappelman 1996; Wood and Collard 1996; Kordos
and Begun 2001; Rightmire 2004; Spocter and Manger
2007; Churchill et al. 2012; Wu and Athreya 2013). More
commonly, however, equations are based on postcranial vari-
ables. The majority of these equations employ measurements
of the femur on the grounds that the lower limbs support the
weight of the head, torso, and upper limbs and can therefore
be expected to directly reflect body mass (Ruff et al. 1991).
However, because factors like activity can also affect femoral
morphology (e.g. Lieberman et al. 2004), and because me-
chanical loading may not be the same in past and present
groups (Ruff 1994), equations based on overall body shape
have also been developed (Ruff 1994; Ruff 2000a, b; Ruff
et al. 2005). These equations employ skeletal variables that
correspond to measures of body breadth (bi-iliac breadth) and
stature (femoral length), and have been argued to be as good
as the femur-based equations (Ruff et al. 1997; Auerbach and
Ruff 2004). These equations have been used widely in
palaeoanthropological, bioarchaeological, and forensic re-
search (e.g. Ruff and Walker 1993; Arsuaga et al. 1999;
Trinkaus and Jelinek 1997; Kurki et al. 2010; Myszka et al.
2012).

Despite their widespread use, the currently available equa-
tions may not be as reliable as they are usually assumed to be.
Evidence for this comes from recent studies that obtained poor
and/or inconsistent results when testing the equations against
populations of known mass (Lorkiewicz-Muszyńska et al.
2013; Elliott et al. 2014; Elliott et al. 2015). In our exploration
of the failure of many of the equations to yield reliable body
mass estimates, it became apparent that one of the main
sources of error is likely to be the data used to generate the
equations (Elliott et al 2014; Elliott et al. 2015). Specifically,
sample sizes have often been extremely small and the analyses
have frequently employed indirect measures of key variables
and/or unassociated mean data for the skeletal features and
body mass (McHenry 1992; Aiello and Wood 1994;
Kappelman 1996; Ruff 2000a; Ruff et al. 2005; Spocter and
Manger 2007). As a result, the true nature of the relationship
between the skeletal variables and body size has often not
been adequately captured.

In light of the above, this study aimed to generate new
equations for estimating body mass from cranial and postcra-
nial skeletal features. By measuring variables directly from
volume-rendered CT data on a large sample of modern
humans of known body mass, our goal was to resolve some
of the shortcomings of earlier equations and provide more
reliable means for estimating mass than currently exist. In
addition, by employing a known-mass test sample, drawn
from the same population as the calibration group, we sought
to evaluate the predictive competence of the resulting equa-
tions in a more robust way than has been possible in the past.

Materials and methods

Sample

This study used archived CT data from 128 male and 125
female deceased modern humans (range=18–90 years, male
mean=48.1 years, female mean=51.2 years). CT scans were
conducted at the Institute of Forensic Medicine (IFM) at the
University of Zurich, Switzerland as part of routine forensic
analyses (Thali et al. 2003), and the data were accessed
through the IFM’s secure server in accordance with their pro-
tocols. Query searches, record reviews, and visual inspection
of the CT scans were used to select the sample. Exclusion
criteria included individuals with skeletal abnormalities, trau-
ma or prosthetics in the anatomical regions of interest, and any
individual who was processed more than 3 days after death.
Sex, age (years), body mass (kg), and stature (cm) were re-
corded for each individual. Population affinity is not recorded
on post-mortem documentation in Switzerland. However, as
more than 80 % of the Swiss population is of European de-
scent (SFSO 2012), we considered the sample to be European.
The full sample of 253 individuals was divided into two
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groups: a calibration sample (n=203) and a randomly chosen
test sample (n=50), of roughly equal numbers of males and
females each (Tables 1 and 2). The calibration sample was
used to derive the regression equations, while the test sample
was used to evaluate their accuracy and precision. Although
other methods have been suggested (Smith 2002), such an
external validation continues to be the most rigorous means
of testing predictive equations (Harrell et al. 1996; Porter
1999; Giancristofaro and Salmaso 2007).

Imaging and 3D reconstruction protocols

CT scans were conducted at the IFM using a 128-slice,
Siemens SOMATOM® Definition Flash, Dual-source CT
scanner (Siemens Healthcare; Forchheim, Germany). Scans
were taken at 120 kV, with a slice thickness of 0.75 mm
(0.375 mm overlap), using bone convolution kernels (Thali
et al. 2003). Milliampere-second (mAs) was automatically
optimized using the Siemens CareDose® option. Scans were
accessed from the IFM archive, and anatomical region volume
rendered using OsiriX imaging software (64-bit extension,
http://www.osirix-viewer.com) (Fig. 1). Skeletal elements
were oriented in consistent planes and measured on the right
side1 to the nearest 0.1 mm using OsiriX tools. The accuracy
of volume rendering skeletal models from CT has been
demonstrated by several studies (Decker et al. 2011; Kim
et al. 2012; Smyth et al. 2012). It was verified during this
project by measuring, scanning, virtually reconstructing, and
then virtually re-measuring an archaeological skull from the
IFM’s collection (Elliott et al. 2014).Measurement differences
between the physical and virtual measurements in the test
were less than 3 %, which was deemed an acceptable level
of error.

Skeletal variables

Twelve cranial and 24 postcranial variables were used for this
study (Tables 3 and 4, Fig. 2). The cranial variables included
six linear measurements selected on the basis of their perfor-
mance in previous studies (Aiello and Wood 1994;
Kappelman 1996; Spocter and Manger 2007). All of these
studies identified orbital and foramen magnum areas as useful
predictors of body mass in hominoid primates. However, as
the variables were not measured in the sameway in the studies
in question, we included three calculations each for orbital and
foramen magnum area: simple length-width (area=L×W), in
accordance with Aiello and Wood (1994) and Spocter and
Manger (2007); area as an ellipse (area=(π/4)×L×W), follow-
ing Spocter and Manger (2007); and a CAD-assisted method
in which the perimeter of the feature was traced from a two-
dimensional image, using a procedure similar to that of
Kappelman (1996).

The postcranial variables included the two most commonly
used measurements for predicting body mass from skeletal
material: femoral head breadth (FHB) and bi-iliac breadth
(BIB). FHB has been used in four sets of published regression
equations (Ruff et al. 1991; McHenry 1992; Grine et al. 1995;
Ruff et al. 2012) and is associated with the mechanical esti-
mation approach (Ruff 2002; Auerbach and Ruff 2004). BIB2

is used in conjunction with stature (STAT), in the second set of
postcranial equations that are collectively referred to as the
“morphometric” approach (Ruff 1994; Ruff et al. 1997,
2005). An additional 12 measurements of the femur were
recorded in order to examine other claims that have beenmade
in the literature. Femoral neck breadth (FNB) was measured in
light of Ruff’s (1991) suggestion that femoral neck size will
exhibit a pattern of correlation with bodymass between that of
the head and shaft due to its intermediate location. Following
Ruff and Hayes (1983) and Ruff (1991, 2000b), maximum
femoral length (FLM) and measurements of medio-lateral
shaft breadth (MLSB) and cortical breadth (MLCB), taken at
multiple locations along the femur, were recorded to explore1 Due to the presence of fractures or prosthetics, 13 cases

required the left femur to be measured. These measurements
were included on the grounds that directional asymmetry in
the lower limbs is small enough to be inconsequential for the
purposes of estimating body mass (Auerbach and Ruff 2004;
Ruff et al. 2012).

2 Because the sample was composed of recently deceased in-
dividuals with intact soft tissues, bi-iliac breadth was taken as
living breadth and did not require the conversion from skeletal
breadth as recommended by Ruff et al. (1997, 2005).

Table 1 Summary statistics for calibration sample (n=203)

Variable Females (n=100) Males (n=103) Combined sex (n=203)

Mean SD Range Mean SD Range Mean SD Range

Weight (kg) 70.3 20.6 31.8-146 81.2 15.6 40.5–128.4 75.9 19.0 31.8–146

Stature (cm) 166.8 8.6 149.0–195.0 177.6 7.9 154.0–193.0 172.3 9.9 149.0–195.0

Age (years) 52 17 18-90 49 14.5 18–80 50.5 15.8 18–90
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how diaphyseal cross-sectional dimensions relate to weight.
Lastly, shaft and cortical breadths were used to calculate 10
indices that correspond to cortical area (CA) and second mo-
ment of area (I) (Ruff et al. 1991). CA and I provide informa-
tion about the cross-sectional geometry and strength of the
femur (Ruff and Hayes 1983) and are calculated as CA=π/
4(D2−d2) and I=π/64(D4−d4), respectively. These calcula-
tions were used here for comparison with Ruff and Hayes
(1983) and Ruff et al. (1991). Supplementary tables 1–4 pro-
vide the summary data for the 36 variables in both samples.

Analyses

Using the calibration sample (n=203), correlation coefficients
were calculated and regression equations derived for each var-
iable for a combined-sex sample, as well as female-only (n=
100) and male-only (n=103) subsamples. Regression equa-
tions were derived for each group using three methods: least
square (LS), reduced major axis (RMA), and major axis (MA)
regression because debate continues to surround the most ap-
propriate choice for predicting an unknown quantity using
regression. Konigsberg et al. (1998) evaluate five univariate
estimation methods (inverse calibration, classic calibration,
major axis regression, reduced major axis regression, and
ratio estimators) and argue that least square regression
(LSR) of body size (stature) on bone length (termed “inverse
calibration”) may be the most appropriate when the target
specimen can be assumed to come from the same distribution
as the calibration sample. Alternatively, they suggest that clas-
sic calibration—regression of bone length on body size,
followed by solving for body size—may be better in situations
where extrapolation is expected or uncertain. Despite this,
most existing equations for estimating body mass have
employed LSR and inverse calibration on the grounds that it
minimizes the estimation error of the dependent variable (in
this case, body mass) (Ruff et al. 1991). LSR also has the

advantage of having correction factors available to account
for biases inherent in the technique (Smith 1993).
Alternative methods like RMA or MA have been argued to
accept more uncertainty in the variables and produce better
results when extrapolating beyond the range of the original
dataset (Ruff et al. 1991; Auerbach and Ruff 2004).
However, consensus on the most appropriate approach has
not been reached and body mass continues to be estimated
from LSR (Pomeroy and Stock 2012) and RMA (Ruff et al.
2012). Consequently, we derived equations with all three
methods. To avoid problems associated with non-normal dis-
tributions, the data were logarithmically transformed (base
10). The standard error of the estimate (SEE) was calculated
according to the formula SEE=√∑(y−y′)2/n−2 (Hinton
2004). Two correction factors—the smearing estimate (SE)
and ratio estimator (RE)3—were also calculated to account
for de-transformation biases when converting from logarith-
mically transformed units into arithmetic units in LS regres-
sion (Smith 1993).

Once the regression equations were derived, individual
skeletal measurements from the test sample were entered into
the corresponding formula and an estimated body mass calcu-
lated in kilogrammes. For the LS regression equations, the
estimated mass was corrected by multiplying it by the average
of the SE and RE, to obtain a final estimated body mass
(EBM) (Smith 1993). EBMs were then compared to the
known masses for the individuals. Raw differences (RD) were
calculated as known-mass EBM. Percentage differences were
calculated as percent error using the formula (PE)=(known−
EBM)/known*100 (Wu et al. 1995)4. Absolute percentage

4 PEs provide the directional difference between the known
and estimated masses. Positive PEs indicate that known
mass>estimated mass (equation underestimates mass), and
negative PEs indicate that known mass<estimated mass
(equation overestimates mass).

Fig. 1 Example of a three-dimensionally reconstructed skeletal element,
volume-rendered from CT data by OsiriX

Table 2 Summary statistics for test sample (n=50)

Variable Females (n=25) Males (n=25) Combined sex (n=50)

Mean SD Range Mean SD Range Mean SD Range

Weight (kg) 66.3 12.8 48–93.7 83.0 19.8 52–142.3 74.6 18.5 48–142.3

Stature (cm) 164.0 6.5 152.0–180.0 176.9 7.9 156.0–190.0 170.5 9.7 152.0–190.0

Age (years) 48 14.3 29–80 44 11.7 23–70 46 13.0 23–88

3 SE is calculated as SE=1/n∑exp(logri), while RE is calcu-
lated as RE=/, “where y is the observed value of the dependent
variable Y for the ith observation on the original measurement
scale and z, is the predicted value for the ith observation,
detransformed back to the original measurement scale without
correction” (Aiello and Wood, 1994:413).
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differences (|PE|) were also calculated to assess the magnitude
of the difference between the estimated and known masses
(Aiello and Wood 1994; Ruff et al. 2005). Mean RDs, PEs,
and |PE|s were calculated for males and females as well as the
whole test sample. Differences were plotted and Wilcoxon
signed-rank tests used to establish their significance. Lastly,
in keeping with previous studies (e.g. Dagosto and Terranova
1992; Aiello and Wood 1994), we also calculated the percent-
age of individuals whose EBM fell within ±20 % of their
known mass. All analyses were conducted in “R” (R Core
Team 2010).

Evaluation criteria

To evaluate the predictive competence of a given equation, we
used the same acceptance criteria as we employed in two
recent tests of the validity of published cranial and postcranial
equations (Elliott et al. 2014; Elliott et al. 2015).
Specifically, equations were considered valid when absolute
percent errors were below 19 % and at least 50 % of the
individuals were estimated within ±20% of their knownmass.
These values were selected in light of ongoing debate regard-
ing what constitutes acceptable levels of error for predictive
analyses. With respect to percent errors, Dagosto and
Terranova (1992) considered 15–30 % to be inaccurate in
interspecific analyses. In contrast, Spocter and Manger
(2007) accepted prediction errors of 10–16% for some of their
analyses, while Aiello and Wood (1994) considered errors of
15–19 % to be acceptable. Regarding the number of estimates
that should fall close to the actual mass, Ruff et al. (2005)
suggest that a reliable intraspecific equation might be expect-
ed to estimate the majority of individuals within 10–15 % of
their known mass. Others suggest that an equation can be
considered reliable if it estimates 60–70 % of the specimens

within 20 % of their known mass (Barrickman 2008). Due to
the broader range of variation, interspecific analyses are ex-
pected to perform worse than intraspecific ones (Smith 2002).
Consequently, interspecific studies often have even lower
limits—accepting equations that estimate 50 % or more of
the sample within ±20 % of known mass (e.g. Dagosto and
Terranova 1992; Aiello andWood 1994). Given the variability
in acceptance criteria, we used the “19 % absolute error” and
“50 % within 20 %” criteria as our limits of acceptance for
consistency and because they provided a relatively lenient
baseline to assess the equations’ predictive competence.

Results

Regression equations

Tables 5 and 6 provide the LSR, MA, and RMA regression
statistics for the cranial and postcranial variables, derived from
the combined-sex calibration sample. Correlation coefficients
for the cranial variables range from 0.06 (p=0.36) for orbital
height (HORB) to 0.33 (p=0.00) for biporionic breadth
(BPOR). For the postcranial variables, correlation coefficients
range from −0.03 (p=0.63) for medio-lateral cortical breadth
at 80 % of femoral shaft length (MLCB80) to 0.59 (p=0.00)
for the index of cortical area at 50 % of femoral shaft length
(CA50). SEEs for the cranial variables are consistent at 0.11,
while SEEs vary slightly for the postcranial variables (0.09–
0.11).

Tables 7 and 8 provide the cranial and postcranial regres-
sion equations derived from the female (n=100) calibration
sample. The correlation coefficients for the cranial measure-
ments vary from −0.01 for foramen magnum breadth (BFM)
to 0.12 for BPOR. However, none of the correlations is

Table 3 Cranial variables used in this study

Variable Description Reference

1 BORB Orbital breadth: distance between maxillofrontale and ectoconchion—in mm Aiello and Wood 1994

2 HORB Orbital height: distance between superior and inferior orbital margins, taken at a right angle
to BORB—in mm

Aiello and Wood 1994

3 BIOR Biorbital breadth: distance between two ectoconchion—in mm Aiello and Wood 1994

4 BPOR Biporionic breadth: distance from porion to porion—in mm Aiello and Wood 1994

5 LFM Foramen magnum length: distance between basion and opisthion—in mm Aiello and Wood 1994

6 BFM Foramen magnum breadth: distance in the coronal plane between the inner margins of the foramen
magnum—in mm

Aiello and Wood 1994

7 ORBA1 Orbital area (b×h): product of breadth×height—in mm2 Aiello and Wood 1994

8 ORBA2 Orbital area (ellipse): calculated from breadth×height as an ellipse—in mm2 Spocter and Manger 2007

9 ORBA3 Orbital area (CAD): calculated from perimeter margin using area function of ImageJ—in mm2 Kappelman 1996

10 FMA1 Foramen magnum area (b×h): product of breadth×height—in mm2 Aiello and Wood 1994

11 FMA2 Foramen magnum area (ellipse): calculated from breadth×height as an ellipse—in mm2 Spocter and Manger 2007

12 FMA3 Foramen magnum area (CAD): calculated from perimeter margin using area function
of ImageJ—in mm2

This study

Archaeol Anthropol Sci (2016) 8:731–750 735



significant at ∝=0.05. Correlation coefficients for the postcra-
nial measurements vary from −0.11 (p=0.28) for medio-
lateral cortical breadth at 35 % (MLCB35) to 0.59 (p=0.00)
for the index of CA50. SEEs for the cranial variables are again
consistent, this time at 0.12. SEEs for the postcranial variables
range from 0.10 to 0.12.

In the male sample, the correlation coefficients for the cra-
nial measurements (Table 9) vary from 0.05 (p=0.62) for
HORB to 0.28 (p=0.00) for BPOR. Correlations for the post-
cranial variables (Table 10) range from −0.02 (p=0.81) for
medio-lateral cortical breadth at 35 % of femoral shaft
(MLCB35) to 0.42 (p=0.00) for the index of CA50. SEEs
for the cranial variables are consistent at 0.09 and range from
0.08 to 0.09 for the postcranial variables.

Prediction accuracy

Tables 11, 12, 13, 14, 15, and 16 summarize the directional
and absolute differences, as well as the percentage of individ-
uals whose body mass was estimated within ±20 % of their
true mass, for each sample using the LSR equations. As the
major axis (MA) and reduced major axis (RMA) regression
equations produced significantly higher rates of error for most
skeletal measurements in all three samples, their results are
provided in the supplementary materials (Suppl. Tables 5–
10) and only the least square (LS) regression results are
discussed here.

In the combined-sex test sample, the cranial variables with
the best predictive accuracy based on the absolute percentage

Table 4 Postcranial variables used in this study

Variable Description Reference

13 FHB Femoral head breadth: superior-inferior breadth perpendicular to the cervical axis—in mm Ruff et al. 1991

14 BIB Bi-iliac breadth: maximum pelvic breadth taken across the iliac crests, taken as “Living BIB”—in mm Ruff 1991, 1994

15 FNB Femoral neck breadth: minimum superior-inferior breadth at the point of deepest concavity of the
superior surface—in mm

Ruff et al. 1991

16 FLM Max femoral length: length of femur from the most superior point on the head to the most inferior point
on the distal condyles—in mm

Buikstra and Ubelaker
1994

17 MLSB80 Medio-lateral shaft breadth at 80 % of total femur length, as measured from the distal end—in mm Ruff and Hayes 1983

18 MLCB80 Sum of medial and lateral cortical breadths at 80 % of total femur length, as measured from the distal
end—in mm

Ruff and Hayes 1983

19 CA80 Index of cortical area at 80 %: calculated from medio-lateral shaft (D) and cortical (d) breadth using π/
4(D2−d2)—in mm2

Ruff et al. 1991

20 I80 Index of second moment of area at 80 %: calculated from shaft (D) and cortical breadth (d) using π/
64(D4−d4)—in mm4

Ruff et al. 1991

21 MLSB65 Medio-lateral shaft breadth at 65 % of total femur length, as measured from the distal end—in mm Ruff and Hayes 1983

22 MLCB65 Sum of medial and lateral cortical breadths at 65 % of total femur length, as measured from the distal
end—in mm

Ruff and Hayes 1983

23 CA65 Index of cortical area at 65 %: calculated from shaft (D) and cortical (d) breadth using π/4(D2−d2)—in mm2 Ruff et al. 1991

24 I65 Index of second moment of area at 65 %: calculated from shaft (D) and cortical breadth (d)
using π/64(D4−d4)—in mm4

Ruff et al. 1991

25 MLSB50 Medio-lateral shaft breadth at 50 % of total femur length, as measured from the distal end—in mm Ruff and Hayes 1983

26 MLCB50 Sum of medial and lateral cortical breadths at 50 % of total femur length, as measured from the distal
end—in mm

Ruff and Hayes 1983

27 CA50 Index of cortical area at 50 %: calculated from shaft (D) and cortical (d) breadth using π/4(D2−d2)—
in mm2

Ruff et al. 1991

28 I50 Index of second moment of area at 50 %: calculated from shaft (D) and cortical breadth (d) using π/
64(D4−d4)—in mm4

Ruff et al. 1991

29 MLSB35 Medio-lateral shaft breadth at 35 % of total femur length, as measured from the distal end—in mm Ruff and Hayes 1983

30 MLCB35 Sum ofmedial and lateral cortical breadths at 35 % of total femur length, as measured from the distal end—in
mm

Ruff and Hayes 1983

31 CA35 Index of cortical area at 35 %: calculated from shaft (D) and cortical (d) breadth using π/4(D2−d2)—in mm2 Ruff et al. 1991

32 I35 Index of second moment of area at 35 %: calculated from shaft (D) and cortical breadth (d) using π/
64(D4−d4)—in mm4

Ruff et al. 1991

33 MLSB20 Medio-lateral shaft breadth at 20 % of total femur length, as measured from the distal end—in mm Ruff and Hayes 1983

34 MLCB20 Sum of medial and lateral cortical breadths at 20 % of total femur length, as measured from the distal
end—in mm

Ruff and Hayes 1983

35 CA20 Index of cortical area at 20 %: calculated from shaft (D) and cortical (d) breadth using π/4(D2−d2)—in mm2 Ruff et al. 1991

36 I20 Index of second moment of area at 20 %: calculated from shaft (D) and cortical breadth (d) using π/
64(D4−d4)—in mm4

Ruff et al. 1991

736 Archaeol Anthropol Sci (2016) 8:731–750



errors and number of individuals estimated within ±20 % of
known mass were BPOR and biorbital breadth (BIOR)
(Table 11). These two variables resulted in mean absolute
percent errors (|PE|) of 17.1 and 18.1 %, respectively. Both
variables estimated 64% of the bodymasses in the test sample
within ±20 % of the known mass. The worst performing cra-
nial variable was foramenmagnum breadth, which produced a
|PE| of 19.6 % and estimated 56 % of the sample masses
within ±20 % of known mass.

The postcranial variable with the best predictive accuracy
in the combined-sex test sample was the index of cortical area
at 35 % of femoral length (CA35)—returning a |PE| of 11.9 %
and estimating 82 % of the sample within ±20 % of known
mass (Table 16). The five indices of secondmoment of area (I)

returned the lowest accuracy rates, resulting in |PE|s exceeding
100 % and estimating no individuals within ±20 % of known
mass.

The best performing cranial variables in the female test
sample were BIOR and orbital area calculated as b×h
(ORBA1) (Table 13). These variables resulted in mean |PE|s
of 17.8 and 19.2 %, respectively, and estimated 56 % of the
body masses in the sample within ±20 % of known mass. The
least accurate cranial variable was orbital area, calculated as an
ellipse (ORBA3). The equation for this variable returned a
|PE| of 18.3 % and estimated 48 % of the sample masses
within ±20 % of known mass.

The best postcranial predictor of body mass in females was
the index of cortical area at 80 % of femur length (CA80),

Fig. 2 Cranial and post-cranial
measurement variables and cross-
sectional locations used in this
study
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Table 5 Least squares (LS), major axis (MA), and reduced major axis (RMA) regression equations for cranial variables. Combined-sex calibration
sample (n=203)

Variable r p value LSR regression MA regression RMA regression

Slope Intercept SEE CF Slope Intercept Slope Intercept

BORB 0.21 0.003 0.951 0.385 0.11 1.03 21.47 −31.59 4.62 −5.34
HORB 0.06 0.362 0.245 1.491 0.11 1.03 55.24 −82.89 3.81 −3.98
BIOR 0.30 0.000 1.566 −1.236 0.11 1.03 16.67 −31.18 5.20 −8.43
BPOR 0.33 0.000 1.527 −1.285 0.11 1.03 13.23 −25.44 4.59 −7.61
LFM 0.21 0.012 0.730 0.746 0.11 1.03 15.59 −22.06 3.51 −3.52
BFM 0.13 0.063 0.384 1.305 0.11 1.03 19.92 −27.27 2.94 −2.43
ORBA1 0.17 0.013 0.492 0.345 0.11 1.03 14.34 −42.47 2.83 −6.89
ORBA2 0.17 0.013 0.492 0.397 0.11 1.03 14.34 −40.96 2.83 −6.59
ORBA3 0.18 0.012 0.522 0.303 0.11 1.04 14.81 −42.51 2.95 −6.97
FMA1 0.19 0.007 0.341 0.844 0.11 1.03 6.86 −18.69 1.81 −3.57
FMA2 0.18 0.007 0.341 0.880 0.11 1.03 6.86 −17.97 1.81 −3.38
FMA3 0.20 0.004 0.370 0.814 0.11 1.03 6.50 −16.65 1.83 −3.34

All data log10 transformed

SEE standard error of estimate, CF correction factor (mean of SE and RE)

Table 6 Least squares (LS), major axis (MA), and reducedmajor axis (RMA) regression equations for postcranial variables. Combined-sex calibration
sample (n=203)

Variable r p value LSR regression MA regression RMA regression

Slope Intercept SEE CF Slope Intercept Slope Intercept

BIB 0.36 0.000 1.43 −1.65 0.10 1.03 10.6 −24.1 4.0 −7.96
FLM 0.33 0.000 1.28 −1.54 0.10 1.03 11.3 −28.1 3.9 −8.54
FHB 0.40 0.000 1.33 −0.38 0.10 1.03 7.6 −11.0 3.3 −3.72
FNB 0.43 0.000 1.12 0.16 0.10 1.03 5.3 −6.3 2.6 −2.11
MLSB80 0.41 0.000 1.25 −0.06 0.10 1.03 6.6 −8.4 3.0 −2.78
MLCB80 −0.03 0.630 − 0.05 1.93 0.11 1.03 −23.3 30.3 −1.5 3.7

CA80 0.52 0.000 0.71 −0.18 0.09 1.03 1.8 −3.3 1.4 −2.1
I80 0.44 0.000 0.33 0.24 0.10 1.03 0.54 −0.77 0.75 −1.8
MLSB65 0.49 0.000 1.35 −0.14 0.10 1.03 5.1 −5.6 2.7 −2.2
MLCB65 0.14 0.039 − 0.15 2.00 0.11 1.03 −1.4 3.1 −1.0 2.8

CA65 0.55 0.000 0.73 − 0.18 0.09 1.03 1.6 −2.7 1.3 −1.9
I65 0.50 0.000 0.34 0.28 0.10 1.03 0.5 −0.4 0.7 −1.3
MLSB50 0.52 0.000 1.58 −0.47 0.09 1.03 5.3 −6.0 3.0 −2.6
MLCB50 0.15 0.038 −0.17 2.02 0.11 1.03 −2.3 4.1 −1.1 2.96

CA50 0.59 0.000 0.85 −0.53 0.09 1.03 1.8 −3.2 1.4 −2.18
I50 0.53 0.000 0.40 0.03 0.09 1.03 0.6 −0.9 0.8 −1.60
MLSB35 0.44 0.000 1.29 −0.08 0.10 1.03 6.1 −7.4 2.9 −2.58
MLCB35 0.00 0.992 0.00 1.87 0.11 1.03 0.0 −844.9 0.0 0.33

CA35 0.56 0.000 0.82 −0.44 0.09 1.03 1.9 −3.5 1.5 −2.23
I35 0.47 0.000 0.35 0.21 0.97 1.03 0.6 −0.7 0.7 −1.65
MLSB20 0.32 0.000 0.89 0.43 0.10 1.03 7.8 −10.8 2.8 −2.66
MLCB20 0.04 0.597 0.06 1.79 0.11 1.03 22.3 −30.0 1.5 −0.28
CA20 0.50 0.000 0.62 0.10 0.10 1.03 1.5 −2.5 1.2 −1.68
I20 0.42 0.000 0.31 0.32 0.10 1.03 0.5 −0.7 0.7 −1.84

All data log10 transformed

SEE standard error of estimate, CF correction factor (mean of SE and RE)
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which returned a |PE| of 13.8 % and estimated 80 % of the
sample within ±20 % of known mass (Table 18). Medio-
lateral cortical breadth at 35 % of femur length, as well as
the five second moment of area indices, all returned |PE|s in
excess of 100 % and failed to estimate any individuals within
±20 % of known mass.

For the male sample, the best cranial predictor of body
mass was BPOR (Table 15). This variable returned a |PE| of
15.9 % and estimated 76 % of the sample within ±20 % of
knownmass. The least accurate predictors were HORB, BFM,
orbital area as an ellipse (ORBA2), and ORBA1. These vari-
ables resulted in |PE|s between 17.6 and 19.2 % and estimated
60 % of the sample within ±20 % of known mass.

With regard to the postcranial variables (Table 16), body
mass was estimated best in the male sample using medio-
lateral shaft breadth at 65 % of femur length (MLSB65).
The LSR equation for this measurement resulted in a |PE| of
17.6 % and estimated 65 % of the male sample’s body masses
within ±20 % of known mass. As in the other two test sam-
ples, the indices of second moment of area performed partic-
ularly poorly—with four of the five returning |PE|s in excess
of 66 % and estimating only 4 % of the body masses in the
male sample within ±20 % of known mass.

Discussion

The goal of the study reported here was to improve the esti-
mation of body mass from skeletal remains by deriving new
regression equations based on more robust data than had been

available to previous studies. To achieve this, we used a large
calibration sample consisting of both males and females;
employed skeletal elements that were complete and undistort-
ed; and derived regression equations from directly measured
skeletal variables matched to individual, associated body
masses. The resulting equations were then evaluated against
a known-mass test sample, using acceptance criteria derived
from the literature.

The results show that 6 of the 12 cranial equations
can be considered valid in the combined-sex sample.
Fourteen of the 24 postcranial equations also met the
criteria for acceptance in this group. In the female-
only sample, all but 1 cranial equation (ORBA3) and
14 of 24 postcranial equations were valid. In the
male-only sample, all the cranial equations met the ac-
ceptance criteria, while 11 of the postcranial equations
were acceptable predictors. Thus, the majority of the
new equations can be considered reliable estimators of
mass, according to the assessment criteria.

Table 17 summarizes a comparison between the results of
our equations and those of previous studies as tested against
our combined-sex test sample (n=50) (Supplementary
Table 11 provides the comparisons for the female and male
samples). The test employed the three best cranial predictors
from Aiello and Wood (1994) (orbital area, orbital height, and
biporionic breadth) and the femoral head breadth equations
provided by Ruff et al. (1991), McHenry (1992), Grine et al.
(1995), and Ruff et al. (2012). Aiello and Wood’s (1994)
equations were used rather than those of Kappelman (1996)
and Spocter and Manger (2007) because they produced lower

Table 7 Least squares (LS), major axis (MA), and reduced major axis (RMA) regression equations for cranial variables. Female calibration sample
(n=100)

Variable r p value LSR regression MA regression RMA regression

Slope Intercept SEE CF Slope Intercept Slope Intercept

BORB 0.04 0.721 0.22 1.50 0.12 1.05 160.6 −246.5 6.0 −7.4
HORB 0.08 0.448 0.33 1.33 0.12 1.04 52.1 −78.1 4.2 −4.7
BIOR 0.15 0.127 1.00 −0.14 0.12 1.04 41.3 −79.6 6.5 −11.0
BPOR 0.12 0.247 0.71 0.38 0.12 1.04 50.5 −101.6 6.1 −10.6
LFM 0.07 0.500 0.30 1.38 0.12 1.03 60.4 −90.3 4.3 −4.8
BFM −0.01 0.914 −0.04 1.88 0.12 1.05 −280.4 409.3 −3.4 6.7

ORBA1 0.08 0.446 0.24 1.07 0.12 1.07 37.3 −113.1 3.2 −8.0
ORBA2 0.08 0.446 0.24 1.10 0.12 1.06 37.3 −109.2 3.2 −7.6
ORBA3 0.06 0.560 0.19 1.25 0.12 1.04 50.3 −148.5 3.3 −8.0
FMA1 0.03 0.790 0.06 1.66 0.12 1.03 63.3 −186.7 2.2 −4.6
FMA2 0.03 0.790 0.06 1.66 0.12 1.04 63.3 −180.1 2.2 −4.4
FMA3 0.03 0.754 0.07 1.64 0.12 1.04 52.0 −145.2 2.1 −4.2

All data log10 transformed

SEE standard error of estimate, CF correction factor (mean of SE and RE)
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Table 9 Least squares (LS), major axis (MA), and reducedmajor axis (RMA) regression equations for cranial variables. Male calibration sample (n=103)

Variable r p value LSR regression MA regression RMA regression

Slope Intercept SEE CF Slope Intercept Slope Intercept

BORB 0.09 0.384 0.35 1.35 0.09 1.02 43.3 −66.1 4.0 −4.4
HORB 0.05 0.620 0.14 1.67 0.09 1.04 52.3 −78.4 2.9 −2.6
BIOR 0.19 0.051 0.92 0.07 0.09 1.02 23.5 −45.0 4.7 −7.6
BPOR 0.28 0.004 1.30 −0.79 0.09 1.01 15.9 −31.1 4.6 −7.7
LFM 0.20 0.039 0.54 1.06 0.09 1.03 11.4 −15.7 2.7 −2.2
BFM 0.15 0.134 0.35 1.39 0.09 1.02 12.9 −17.0 2.3 −1.5
ORBA1 0.09 0.359 0.22 1.23 0.09 1.01 21.4 −64.5 2.4 −5.5
ORBA2 0.09 0.359 0.22 1.25 0.09 1.01 21.4 −62.2 2.4 −5.2
ORBA3 0.12 0.237 0.30 1.00 0.09 1.02 18.0 −52.3 2.5 −5.7
FMA1 0.20 0.043 0.28 1.04 0.09 1.04 3.9 −9.8 1.4 −2.4
FMA2 0.20 0.043 0.28 1.07 0.09 1.04 3.9 −9.4 1.4 −2.2
FMA3 0.21 0.035 0.32 0.99 0.09 1.02 4.3 −10.5 1.5 −2.4

All data log10 transformed

SEE standard error of estimate, CF correction factor (mean of SE and RE)

Table 8 Least squares (LS), major axis (MA), and reduced major axis (RMA) regression equations for postcranial variables. Female calibration
sample (n=100)

Variable r p value LSR regression MA regression RMA regression

Slope Intercept SEE CF Slope Intercept Slope Intercept

BIB 0.32 0.001 1.27 −1.27 0.11 1.03 11.8 −26.9 4.0 −7.9
FLM 0.14 0.156 0.68 0.04 0.12 1.03 31.6 −81.8 4.7 −10.7
FHB 0.15 0.128 0.82 0.47 0.11 1.04 33.8 −54.3 5.4 −7.1
FNB 0.27 0.006 1.05 0.25 0.12 1.04 13.3 −18.2 3.9 −4.0
MLSB80 0.33 0.001 1.36 −0.25 0.11 1.04 12.2 −16.8 4.2 −4.6
MLCB80 −0.25 0.013 −0.44 2.36 0.12 1.04 −5.1 8.0 −1.8 4.0

CA80 0.53 0.000 0.99 −0.98 0.10 1.04 2.8 −6.2 1.9 −3.4
I80 0.38 0.000 0.40 −0.09 0.11 1.05 1.1 −3.6 1.1 −3.2
MLSB65 0.43 0.000 1.43 −0.27 0.11 1.05 7.3 −8.8 3.4 −3.1
MLCB65 −0.36 0.000 −0.40 2.19 0.11 1.05 −1.4 3.1 −1.1 2.8

CA65 0.52 0.000 0.83 −0.47 0.10 1.03 2.3 −4.4 1.6 −2.6
I65 0.44 0.000 0.37 0.16 0.11 1.03 0.7 −1.2 0.8 −2.0
MLSB50 0.49 0.000 1.82 −0.83 0.11 1.05 7.3 −8.8 3.7 −3.6
MLCB50 −0.30 0.002 −0.37 2.18 0.11 1.03 −1.8 3.6 −1.2 3.0

CA50 0.59 0.000 1.02 −0.98 0.10 1.02 2.4 −4.8 1.7 −3.0
I50 0.50 0.000 0.47 −0.27 0.11 1.01 0.9 −2.1 0.9 −2.4
MLSB35 0.37 0.000 1.39 −0.24 0.11 1.04 9.4 −12.1 3.7 −3.7
MLCB35 −0.11 0.279 −0.15 2.00 0.12 1.05 −6.0 8.8 −1.4 3.4

CA35 0.57 0.000 1.09 −1.18 0.10 1.04 2.8 −5.8 1.9 −3.4
I35 0.42 0.000 0.40 −0.03 0.11 1.05 0.9 −2.3 1.0 −2.6
MLSB20 0.21 0.034 0.72 0.68 0.12 1.04 14.7 −21.6 3.4 −3.6
MLCB20 −0.12 0.243 −0.20 2.11 0.12 1.05 −9.3 15.0 −1.7 4.2

CA20 0.54 0.000 0.82 −0.50 0.10 1.05 2.1 −4.1 1.5 −2.5
I20 0.36 0.000 0.33 0.17 0.11 1.06 0.8 −2.1 0.9 −2.7

All data log10 transformed

SEE standard error of estimate, CF correction factor (mean of SE and RE)
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Table 11 Summary of difference between known and estimated mass using LSR equations for cranial variables. Combined-sex test sample (n=50),
ordered by percentage of individuals estimated within 20 % of known mass

Variable Directional difference Absolute difference 20 % (%) t test p value

Raw diff (kg)
Mean (SD)

PE
Mean (SD)

Raw diff (kg)
Mean (SD)

|PE|
Mean (SD)

BPOR −0.51 (16.2) −5.38 (21.2) 12.28 (10.4) 17.13 (13.5) 64.0 0.82

BIOR −1.26 (17.1) −6.78 (22.9) 12.83 (11.3) 18.11 (15.3) 64.0 0.6

FMA3 −1.16 (17.8) −6.79 (22.9) 13.39 (11.6) 18.91 (14.3) 58.3 0.65

BORB −1.10 (17.8) −6.83 (23.6) 13.77 (11.2) 19.33 (14.9) 58.0 0.66

LFM −0.18 (18.2) −5.49 (22.8) 13.65 (11.8) 18.78 (13.7) 58.0 0.94

ORBA1 −0.85 (18.0) −6.54 (23.6) 13.71 (11.6) 19.18 (15.0) 58.0 0.74

ORBA2 −0.92 (18.0) −6.63 (23.6) 13.71 (11.6) 19.20 (15.0) 58.0 0.72

FMA1 −0.43 (17.8) −5.85 (22.9) 13.57 (11.4) 18.87 (14.0) 58.0 0.87

FMA2 −0.47 (17.8) −5.90 (22.9) 13.57 (11.4) 18.88 (14.0) 58.0 0.85

ORBA3 −2.42 (18.0) −8.67 (23.8) 13.58 (11.8) 19.47 (15.9) 56.2 0.36

HORB −1.08 (18.4) −7.08 (24.2) 14.17 (11.7) 19.90 (15.3) 56.0 0.68

BFM −0.94 (18.0) −6.72 (23.7) 13.95 (11.2) 19.61 (14.7) 56.0 0.71

Table 10 Least squares (LS), major axis (MA), and reduced major axis (RMA) regression equations for postcranial variables. Male calibration sample
(n=103)

Variable r p value LSR regression MA regression RMA regression

Slope Intercept SEE CF Slope Intercept Slope Intercept

BIB 0.34 0.000 1.23 −1.11 0.08 1.01 10.0 −22.7 3.6 −7.0
FLM 0.29 0.003 1.07 −0.97 0.09 1.03 11.5 −28.9 3.6 −7.9
FHB 0.40 0.000 1.57 −0.78 0.08 1.02 9.3 −14.0 3.9 −4.8
FNB 0.34 0.000 1.04 0.28 0.08 1.02 7.9 −10.5 3.0 −2.8
MLSB80 0.26 0.008 0.74 0.74 0.09 1.02 9.6 −13.2 2.8 −2.6
MLCB80 0.06 0.517 0.07 1.81 0.09 1.03 2.9 −1.7 1.1 0.6

CA80 0.29 0.003 0.39 0.75 0.09 1.03 2.5 −5.3 1.3 −2.0
I80 0.28 0.005 0.20 0.92 0.09 1.01 0.4 0.1 0.7 −1.7
MLSB65 0.34 0.000 1.00 0.41 0.09 1.00 7.7 −9.8 2.9 −2.5
MLCB65 −0.08 0.406 −0.07 1.97 0.09 1.02 −0.3 2.2 −0.9 2.8

CA65 0.39 0.000 0.53 0.38 0.08 1.02 2.1 −4.2 1.4 −2.0
I65 0.35 0.000 0.25 0.71 0.08 1.03 0.4 −0.2 0.7 −1.5
MLSB50 0.35 0.000 1.12 0.22 0.08 1.02 8.3 −10.6 3.2 −2.9
MLCB50 −0.15 0.133 −0.15 2.04 0.09 1.03 −0.8 2.7 −1.0 2.9

CA50 0.42 0.000 0.64 0.07 0.08 1.03 2.5 −5.1 1.5 −2.4
I50 0.36 0.000 0.29 0.56 0.08 1.00 0.6 −0.7 0.8 −1.8
MLSB35 0.24 0.014 0.76 0.74 0.09 1.02 11.7 −16.0 3.1 −2.9
MLCB35 −0.02 0.814 −0.03 1.93 0.09 1.03 −9.3 13.0 −1.1 3.2

CA35 0.36 0.000 0.58 0.26 0.08 1.01 3.1 −6.8 1.6 −2.7
I35 0.27 0.005 0.22 0.84 0.09 1.03 0.5 −0.5 0.8 −2.0
MLSB20 0.20 0.048 0.48 1.11 0.09 1.03 10.7 −15.6 2.5 −2.1
MLCB20 0.13 0.196 0.15 1.69 0.09 1.02 2.7 −2.1 1.2 0.2

CA20 0.23 0.017 0.27 1.10 0.09 1.03 1.8 −3.4 1.2 −1.5
I20 0.24 0.014 0.16 1.06 0.09 1.05 0.3 0.5 0.7 −1.6

All data log10 transformed

SEE standard error of estimate, CF correction factor (mean of SE and RE)
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Table 13 Summary of difference between known and estimated mass using LSR equations for cranial variables. Female test sample (n=25), ordered
by percentage of individuals estimated within 20 % of known mass

Variable Directional difference Absolute difference 20 % (%) t test p value

Raw diff (kg)
Mean (SD)

PE
Mean (SD)

Raw diff (kg)
Mean (SD)

|PE|
Mean (SD)

BIOR −4.4 (12.3) −10.3 (20.3) 10.7 (7.2) 17.8 (13.8) 56.0 0.09

ORBA1 −5.8 (12.5) −12.5 (20.8) 11.4 (7.4) 19.2 (14.6) 56.0 0.03

ORBA2 −5.1 (12.5) −11.5 (20.6) 11.3 (7.0) 18.8 (13.9) 56.0 0.05

BORB −5.1 (12.8) −11.5 (20.9) 11.5 (7.3) 19.0 (14.1) 52.0 0.06

HORB −3.7 (12.4) −9.2 (20.1) 11.2 (6.1) 18.3 (12.0) 52.0 0.15

BPOR −4.0 (12.7) −9.7 (20.3) 10.9 (7.3) 17.9 (13.4) 52.0 0.13

LFM −2.9 (12.5) −8.0(20.0) 11.1 (6.2) 17.9 (11.5) 52.0 0.26

BFM −4.8 (12.8) −11.1 (20.9) 11.5 (7.1) 19.0 (13.7) 52.0 0.07

FMA1 −3.7 (12.8) −9.3 (20.6) 11.3 (6.6) 18.5 (12.5) 52.0 0.17

FMA2 −3.6 (12.8) −9.3 (20.6) 11.3 (6.6) 18.5 (12.5) 52.0 0.17

FMA3 −4.0 (12.8) −9.8 (20.7) 11.4 (6.7) 18.7 (12.9) 52.0 0.13

ORBA3 −4.2 (12.5) −10.1 (20.4) 11.2 (6.7) 18.3 (13.1) 48.0 0.1

Table 12 Summary of difference between known and estimated mass using LSR equations for postcranial variables. Combined-sex test sample (n=
50), ordered by percentage of individuals estimated within 20 % of known mass

Variable Directional difference Absolute difference 20 % (%) t test p value

Raw diff (kg)
Mean (SD)

PE
Mean (SD)

Raw diff (kg)
Mean (SD)

|PE|
Mean (SD)

CA35 0.8 (11.3) −1.6 (14.6) 8.9 (6.8) 11.9 (8.4) 82.0 0.62

CA65 −2.1 (12.5) −5.9 (16.2) 10.2 (7.3) 14.1 (9.9) 80.0 0.24

MLSB50 1.0 (12.6) −1.7 (16.0) 9.2 (8.6) 12.3 (10.2) 80.0 0.58

CA50 2.3 (11.7) 0.7 (14.4) 8.6 (8.2) 11.1 (8.9) 80.0 0.17

MLSB65 1.4 (13.4) −1.4 (16.5) 9.9 (9.1) 13.0 (10.1) 78.0 0.46

CA80 1.1 (12.9) −1.7 (16.5) 9.6 (8.5) 12.8 (10.3) 76.0 0.56

MLSB35 0.1 (13.9) −3.5 (18.1) 10.9 (8.5) 14.7 (10.8) 74.0 0.95

FHB 1.3 (15.7) −2.3 (19.4) 12.1 (9.8) 16.2 (10.7) 70.0 0.55

CA20 −2.8 (14.2) −7.5 (19.4) 11.7 (8.3) 16.5 (12.4) 70.0 0.17

MLSB80 −1.2 (14.6) −5.5 (18.8) 11.1 (9.4) 15.4 (12.0) 68.0 0.56

BIB 3.0 (16.8) −0.5 (21.4) 12.7 (11.3) 16.8 (13.0) 64.0 0.21

MLSB20 −0.1 (16.1) −4.6 (20.9) 12.6 (9.9) 17.2 (12.5) 62.0 0.97

FLM −0.4 (17.0) −5.2 (21.6) 13.2 (10.6) 18.1 (12.5) 60.0 0.88

MLCB65 −1.0 (18.4) −7.0 (24.8) 14.4 (11.3) 20.4 (15.5) 58.0 0.69

MLCB50 −0.3 (18.8) −6.0 (24.8) 14.5 (11.7) 20.2 (15.4) 58.0 0.92

FNB −2.2 (16.1) −7.2 (21.1) 13.2 (9.3) 18.4 (12.4) 56.0 0.35

MLCB80 −1.6 (18.5) −7.9 (26.2) 14.6 (11.4) 20.6 (18.3) 54.0 0.54

MLCB35 −1.7 (18.5) −8.1 (24.7) 14.6 (11.4) 20.6 (15.6) 54.0 0.51

MLCB20 −2.6 (18.4) −9.3 (24.8) 14.7 (11.2) 21.0 (15.9) 54.0 0.31

I80 −101.1 (16.0) −144.1 (42.3) 101.1 (16.0) 144.1 (42.3) 0.0 0

I65 −108.4 (16.3) −153.6 (41.0) 108.4 (16.3) 153.6 (41.0) 0.0 0

I50 −150.7 (23.4) −211.0 (48.4) 150.7 (23.4) 211.0 (48.4) 0.0 0

I35 −117.4 (17.4) −166.1 (44.6) 117.4 (17.4) 166.1 (44.6) 0.0 0

I20 −109.7 (20.7) −156.6 (49.4) 109.7 (20.7) 156.6 (49.4) 0.0 0
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Table 15 Summary of difference between known and estimated mass using LSR equations for cranial equations. Male test sample (n=25), ordered by
percentage of individuals estimated within 20 % of known mass

Variable Directional difference Absolute difference 20 % (%) t test p value

Raw diff (kg)
Mean (SD)

PE
Mean (SD)

Raw diff (kg)
Mean (SD)

|PE|
Mean (SD)

BPOR 3.7 (17.9) 0.1 (20.1) 13.4 (12.1) 15.9 (11.8) 76 0.3

BIOR 2.1 (19.5) −2.5 (23.0) 14.5 (12.9) 17.7 (14.4) 72 0.6

ORBA3 0.6 (20.4) −4.6 (23.7) 15.1 (13.3) 18.8 (14.7) 65.2 0.9

FMA3 0.8 (20.3) −4.2 (22.4) 14.6 (13.8) 17.8 (13.7) 65.2 0.9

FMA2 0.1 (19.8) −4.9 (22.7) 14.8 (12.7) 18.3 (13.8) 64 1.0

FMA1 0.2 (19.8) −4.8 (22.7) 14.8 (12.7) 18.3 (13.8) 64 1.0

LFM 1.2 (20.5) −3.7 (23.2) 15.4 (13.3) 18.7 (13.7) 64 0.8

BORB 2.1 (19.6) −2.5 (22.9) 14.9 (12.6) 18.2 (13.6) 64 0.6

HORB −0.2 (20.0) −5.5 (24.0) 15.3 (12.4) 19.2 (14.9) 60 1.0

BFM 1.5 (19.3) −3.1 (22.2) 14.4 (12.6) 17.6 (13.5) 60 0.7

ORBA2 2.6 (19.9) −1.9 (23.1) 15.2 (12.8) 18.5 (13.5) 60 0.5

ORBA1 2.7 (19.9) −1.8 (23.1) 15.2 (12.8) 18.5 (13.5) 60 0.5

Table 14 Summary of difference between known and estimated mass using LSR equations for postcranial variables. Female test sample (n=25),
ordered by percentage of individuals estimated within 20 % of known mass

Variable Directional difference Absolute difference 20 % (%) t test p value

Raw diff (kg)
Mean (SD)

PE
Mean (SD)

Raw diff (kg)
Mean (SD)

|PE|
Mean (SD)

CA80 −3.6 (10.1) −7.5 (16.4) 8.6 (6.2) 13.8 (11.3) 80.0 0.09

CA50 −3.6 (10.9) −7.3 (16.8) 10.0 (5.3) 15.4 (9.4) 76.0 0.11

CA35 −3.0 (11.0) −6.3 (17.2) 8.9 (6.9) 13.8 (11.7) 76.0 0.18

MLSB80 −2.7 (11.5) −7.0 (18.4) 9.6 (6.7) 15.4 (11.9) 72.0 0.26

MLSB65 −2.6 (10.3) −6.4 (16.4) 8.5 (6.1) 13.7 (10.8) 72.0 0.21

CA65 −4.8 (10.0) −9.3 (16.0) 9.7 (5.3) 15.3 (10.0) 72.0 0.02

MLSB50 −2.3 (11.2) −5.8 (17.8) 9.4 (6.3) 14.8 (11.2) 72.0 0.31

CA20 −3.2 (12.3) −7.2 (19.7) 9.2 (8.6) 14.7 (14.8) 72.0 0.2

MLSB35 −3.0 (12.2) −7.3 (18.9) 10.1 (7.2) 15.9 (12.1) 68.0 0.24

MLCB80 −5.4 (12.7) −11.9 (21.0) 11.5 (7.5) 19.0 (14.6) 64.0 0.04

MLSB20 −3.4 (12.6) −8.5 (19.7) 10.8 (7.0) 17.3 (12.3) 64.0 0.19

MLCB20 −4.5 (12.8) −10.6 (21.2) 11.4 (7.0) 18.9 (13.9) 64.0 0.09

MLCB50 −4.4 (14.2) −10.2 (23.7) 11.5 (9.2) 18.8 (17.3) 60.0 0.13

FHB −3.3 (13.0) −8.7 (20.8) 11.3 (6.9) 18.3 (12.6) 56.0 0.22

FNB −3.1 (14.0) −8.5 (22.1) 12.0 (7.5) 19.2 (13.4) 56.0 0.28

BIB −2.4 (13.6) −7.3 (21.5) 11.3 (7.6) 18.1 (13.2) 52.0 0.38

FLM −3.8 (13.5) −9.7 (21.2) 11.9 (7.0) 19.3 (12.6) 52.0 0.17

MLCB65 −7.0 (13.3) −14.1 (22.5) 12.2 (8.5) 20.5 (16.6) 52.0 0.01

I80 −141.6 (19.5) −221.9 (54.5) 141.6 (19.5) 221.9 (54.5) 0.0 0

I65 −130.1 (19.2) −203.0 (46.6) 130.1 (19.2) 203.0 (46.6) 0.0 0

I50 −194.0 (32.8) −301.3 (67.3) 194.0 (32.8) 301.3 (67.3) 0.0 0

MLCB35 −89.3 (14.4) −143.3 (47.0) 89.3 (14.4) 143.3 (47.0) 0.0 0

I35 −140.4 (22.5) −219.8 (55.6) 140.4 (22.5) 219.8 (55.6) 0.0 0

I20 −104. 1 (20.5) −164.4 (50.1) 104.1 (20.5) 164.4 (50.1) 0.0 0
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levels of error in our previous study (Elliott et al. 2014). The
four combined-sex FHB equations were included because
they are all used regularly (e.g. Trinkaus et al. 2014). We
employed only the combined-sex sample to ensure a large
sample size and because sex is often difficult to attribute in
fragmentary skeletal remains.

Our regression equations for orbital area (ORBA) and
HORB resulted in lower rates of error and placed more indi-
viduals within ±20 % of their known mass than did Aiello and
Wood’s (1994) equations. In contrast, our equation for BPOR
had a higher percent error and estimated fewer individuals
within ±20 % of known mass than did Aiello and Wood’s
(1994) equation (64 % compared to 70 %). Among the FHB
equations, our regression equation estimated more individuals
within ±20 % of known mass than did any of the published
equations, including the newest one, which is designed for
broad application to Holocene populations (Ruff et al.
2012). Thus, our equations generally outperformed the best
equations in the literature.

Table 17 Comparison of the present results with those of previously
published regression equations (combined-sex test sample, n=50)

Estimate (kg)
Mean (SD)

Raw diff (kg)
Mean (SD)

|PE| (SD) 20 %

Known mass 74.6 – –

ORBA1 A&W 53.5 (10.6) 21.1 (19.2) 28.7 (15.0) 28

ORBA1 present study 75.5 (3.2) 0.9 (18.0) 19.2 (15.0) 58

HORB A&W 47.1 (11.6) 27.5 (20.9) 35.7 (17.7) 26

HORB present study 75.7 (1.1) −1.1 (18.4) 19.9 (15.3) 56

BPOR A&W 69.7 (13.0) 4.9 (15.7) 15.6 (12.4) 70

BPOR present study 75.1 (5.6) −0.5 (16.2) 17.1 (13.5) 64

FHB RUFF 78.1 (8.3) −3.5 (15.6) 18.5 (12.7) 62

FHB MCHENRY 66.7 (8.7) 7.9 (15.6) 14.9 (11.4) 68

FHB GRINE 71.5 (8.8) 3.1 (15.6) 15.4 (10.5) 68

FHB RUFF 2012 67.8 (8.9) 6.8 (15.6) 14.8 (11.2) 68

FHB Present study 73.3 (7.9) 1.3 (15.7) 16.2 (10.7) 70

Table 16 Summary of difference between known and estimated mass using LSR equations for postcranial equations. Male test sample (n=25),
ordered by percentage of individuals estimated within 20 % of known mass

Variable Directional difference Absolute difference 20 % (%) t test p value

Raw diff (kg)
Mean (SD)

PE
Mean (SD)

Raw diff (kg)
Mean (SD)

|PE|
Mean (SD)

MLSB65 9.0 (19.6) 6.6 (20.3) 15.8 (14.4) 17.6 (11.7) 65 0.0

MLCB20 1.7 (20.5) −3.2 (24.5) 15.7 (12.9) 19.4 (14.9) 64 0.7

MLSB35 7.8 (21.1) 4.4 (23.7) 16.9 (14.6) 19.6 (13.5) 64 0.1

CA80 9.2 (19.9) 6.6 (21.2) 16.4 (14.4) 18.4 (11.9) 64 0.0

MLCB65 0.2 (19.6) −4.9 (23.5) 15.3 (11.9) 19.1 (14.1) 60 1.0

BIB 5.2 (19.9) 1.5 (23.0) 15.5 (13.1) 18.4 (13.3) 60 0.2

MLSB80 7.9 (20.2) 4.8 (22.2) 16.2 (14.2) 18.6 (12.5) 60 0.1

MLCB35 1.9 (19.7) −2.7 (23.0) 14.9 (12.6) 18.3 (13.7) 56 0.6

MLCB80 2.4 (19.9) −2.2 (23.3) 15.1 (12.8) 18.4 (13.9) 56 0.6

MLSB20 6.0 (21.1) 2.0 (24.3) 16.7 (13.8) 19.7 (13.7) 56 0.2

CA35 10.0 (21.2) 7.3 (23.0) 17.5 (15.4) 19.7 (13.3) 56 0.0

CA65 10.2 (19.6) 8.1 (20.1) 16.1 (14.9) 17.7 (12.1) 56 0.0

MLSB50 11.3 (19.9) 9.4 (20.5) 16.6 (15.6) 18.2 (12.9) 56 0.0

CA50 12.4 (19.9) 11.0 (20.2) 17.2 (15.8) 18.8 (12.9) 56 0.0

MLCB50 0.4 (19.2) −4.4 (22.8) 15.0 (11.7) 18.6 (13.4) 52 0.9

CA20 7.8 (20.3) 4.70 (22.3) 16.4 (14.0) 18.8 (12.3) 52 0.1

FLM 9.8 (22.0) 6.8 (23.2) 18.0 (15.8) 20.2 (12.7) 52 0.0

FHB 16.3 (21.6) 15.1 (21.5) 20.8 (17.1) 22.8 (12.6) 48 0.0

FNB 12.5 (22.3) 10.1 (23.3) 19.2 (16.6) 21.5 (13.1) 40 0.0

I20 −33.9 (22.3) −48.7 (37.1) 36.3 (17.9) 50.3 (34.7) 16 0.0

I80 −47.9 (21.0) −66.0 (38.6) 49.3 (17.6) 66.9 (36.9) 4 0.0

I65 −59.8 (21.0) −80.3 (39.3) 60.4 (19.4) 80.7 (38.5) 4 0.0

I50 −80.4 (23.0) −106.6 (46.9) 80.4 (23.0) 106.6 (46.9) 4 0.0

I35 −52.0 (23.2) −71.7 (42.8) 53.2 (20.1) 72.5 (41.3) 4 0.0
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Given that the majority of the equations we generated met
the criteria for accuracy and generally outperformed the best
equations in the literature, the study achieved its goal of im-
proving the estimation of body mass from skeletal remains.
However, several issues must be considered.

One important consideration with respect to the results is
that of age. Body mass has been argued to increase with age,
particularly in females and after the fifth decade, as a result of
increased fat accumulation (Holloway 1980; Ruff et al. 1991,
2005). Ageing may also alter the relationship between body
mass and a variable through endosteal resorption and/or in-
creasing cross-sectional diameters through periosteal apposi-
tion (Cooper et al. 2007; Doyle et al. 2011). In addition, past
populations may not have lived as long (Robson and Wood
2008) or experienced the same age-related weight gains as
modern populations, making the inclusion of older individuals
in reference samples potentially unnecessary for application to
archaeological or fossil groups. On the other hand, body mass
may decrease with advanced age (>60) due to inactivity, ca-
chexia, and sarcopenia (Seidell and Visscher 2000;
Perissinotto et al. 2002). Age is also extremely difficult to
assess once skeletal maturity is reached, particularly in popu-
lations whose growth and senescent trajectories may not be
the same as modern humans (Dean et al. 2014). Stature also
decreases with age, as a result of disc compression, fractures,
and postural changes (Cline et al. 1989). This factor may be
particularly relevant for the morphometric postcranial equa-
tions and for females, as the effect may be exaggerated due to
their higher susceptibility to osteoporosis (Pothiwala et al.
2006). Accordingly, the extent to which body mass predic-
tions could vary with age is not straightforward.

We considered the effect of age on estimation accuracy for
published equations in two previous papers (Elliott et al. 2014;
in press) and did not find a significant influence. To explore
this effect in the present research, we ran two additional sets of
analyses. The first divided the test sample into three age cat-
egories: 18–39, 40–59, and 60+, while the second restricted
the test sample to individuals between 18 and 60 years (n=
46).

Supplementary Table 12 gives the sample summary for the
first test, and Supplementary Tables 13 and 14 provide the
cranial and postcranial results for these analyses. For the cra-
nial variables, absolute percent prediction errors were gener-
ally lower in the 18–39-year-old age group than the 40–59-
year olds, but in 11 of 12 cases, the over-60 age group had the
lowest error of the three groups. This suggests that age did not
bias our cranial results. For the postcranial variables, the re-
sults were mixed. Joint dimensions are thought to be unre-
sponsive to load changes throughout adult life, while diaphy-
seal breadths can be affected by changes in mechanical load-
ing, environmental stress, and activity (Ruff et al. 1991;
Trinkaus et al. 1994; Lieberman et al. 2001). Consequently,
one might expect variables related to joint size to show higher

prediction errors in older adults than in younger individuals,
with diaphyseal dimensions showing the opposite effect (Ruff
et al. 1991). In our sample, this means that FHB should have
estimated mass more accurately in the 18–39 age group be-
cause they are likely to be closer to their “weight at maturity”
than older individuals. Conversely, diaphyseal dimensions
should estimate current mass in older individuals better be-
cause they have responded to external influences. However,
our results did not show this consistently. For example, in
keeping with expectations, FHB resulted in lower percent pre-
diction errors in individuals younger than 40 versus older than
40. But the equation for femoral neck breadth estimated the
18–39-year olds better than the two older groups. Cortical area
indices, also expected to perform better with current weight on
older adults, did not consistently return lower error rates as age
increased. This suggests that age was not a major factor in our
postcranial results either.

Regarding the second analysis, restricting the age range to
individuals younger than 60 did not substantially change the
absolute percent prediction error rates for most of the cranial
and postcranial variables (Supplementary Tables 15 and 16).
Several variables (FHB, I80, I65, I50) showed a small drop in
|PPE|, but others (FNB, CA35) showed a slight increase when
age was restricted. The differences in error rates for different
variables and different regions likely relate to interrelation-
ships between age, activity, body mass, and other factors.

Overall, the results of the two tests suggest that age does
not have a consistent effect on body mass estimation from
skeletal remains, at least in our sample.

While our results suggest that a number of the new
equations are accurate, it must be kept in mind that the
equations were generated and tested under ideal condi-
tions: both the calibration and test samples comprised
individuals of known body mass and sex, and the test
sample was drawn from the sample population as the
calibration sample. Thus, the results represent a best-
case scenario and must be considered to be the upper
limit of accuracy for estimating body mass from
hominin skeletal remains. Despite this, failure rates were
surprisingly high and the body masses of many speci-
mens were not estimated within 20 % of their actual
body masses. To reiterate, in the combined-sex sample,
6 of the 12 cranial variables failed to meet the |PE|
criterion and none estimated more than 64 % of the
sample within 20 % of their known mass. Ten of the
24 postcranial variables failed to meet the |PE| criterion,
and only 4 variables (CA35, CA65, MLSB50, and
CA50) estimated 80 % or more individuals within
20 % of their known mass. This suggests that the utility
of the standard, regression-based approach to estimating
body mass from skeletal remains is much more limited
than the field has appreciated. Even under ideal condi-
tions, body mass estimates are not likely to be very
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accurate, and any deviation in terms of incomplete or
distorted elements, sex uncertainty, or proportional dif-
ferences between the reference and target groups will
almost certainly result in greater error. As a result, es-
timating body mass using any regression equation must
be undertaken very cautiously and the resulting masses
considered ball-park figures at best.

Our results also challenge current assumptions regarding
the way different variables perform. In relation to cranial var-
iables, orbital height (HORB) has been argued to be the best
single predictor of bodymass in hominoids, including humans
(Aiello and Wood 1994; Churchill et al. 2012). However, in
the present study, HORB was not one of the top four estima-
tors in any of the test samples. In fact, in the combined-sex
sample, it was one of the least accurate. Orbital area (ORBA)
also failed to estimate mass as reliably as previous studies
have suggested (Aiello and Wood 1994; Kappelman 1996;
Spocter and Manger 2007). Aiello and Wood (1994) also
identified biporionic breadth (BPOR) as a reliable predictor.
In the present study, this variable achieved lower rates of error
than other cranial variables, but still failed to estimate more
than 64 % of the combined-sex sample within ±20 % of
known mass. As a result, these variables probably should
not be considered the most appropriate for estimating mass.

Several expectations regarding postcranial variables were
also not met. For example, femoral head breadth was not
among the top postcranial predictors for any of the samples
and none of the FHB equations estimated more than 70 % of
any of the three test samples within ±20 % of known mass.
This was surprising since femoral head breadth is the most
widely used skeletal variable for estimating body mass (Ruff
et al. 1991; McHenry 1992; Grine et al. 1995; Ruff 2010; Ruff
et al. 2012), largely because the femur bears the brunt of the
body’s weight. Femoral head breadth has also been argued to
be more appropriate for body mass estimation than other areas
of the femur because it is less responsive to external influences
like environmental stresses and activity (Ruff et al. 1997).
Habitual activity, in particular, is thought to influence femoral
cross-sectional dimensions strongly (Ruff and Hayes 1983;
Ruff and Hayes 1983; Trinkaus et al. 1991; Trinkaus and
Ruff 1999). Despite this, several shaft dimensions pro-
duced lower rates of error than femoral head breadth
in the present study. Consequently, these results suggest

that FHB may not be as reliable an estimator of mass as
it is usually assumed to be.

Although the extent to which diaphyseal dimensions are
influenced by activity, environment, bodymass, or some com-
bination of these factors continues to be poorly understood
(Pearson and Lieberman 2004; Pearson et al. 2008), our results
suggest that shaft measurements should be investigated more
thoroughly for their ability to estimate individual mass reli-
ably. As noted, mid-shaft dimensions, particularly cortical area
indices and medio-lateral shaft breadths, consistently per-
formed better than FHB. While obtaining cortical dimensions
was a difficult task in the past as it required the use of two-
dimensional radiography or physical sectioning of the bone
(e.g. Ruff and Hayes 1983), technologies like CT and MRI
are becoming more accessible for bioanthropological research
and offer the potential for accurate and non-destructive ways
of accessing these data (Thali et al. 2003). Consequently, fur-
ther research in this area should be pursued.

More surprising still, the results did not consistently sup-
port expectations regarding the relative reliability of cranial
versus postcranial variables. Although functional relation-
ships are not a prerequisite for good predictability (Smith
2002), most researchers argue that postcranial features will
estimate mass better than cranial features because they bear
the body’s weight (e.g. Jungers 1990; Ruff et al. 1991). Our
results suggest that this assumption needs to be examined
more closely. Using the average of the 20 % criterion results
for each set of variables in each sample (Table 18), the equa-
tions derived from the postcranial variables estimate mass
more accurately than the cranial variables in the female and
combined-sex samples. However, in males, the postcranial
variables were less accurate than the cranial variables.
This suggests that the relationship between lower limb
morphology and mass may be different in males than in
females. While this may be due to variations in activity
or muscle mass, as noted earlier, the relationship be-
tween skeletal morphology, activity, and muscling con-
tinues to be a complex problem (Stirland 1998; Weiss
et al. 2012; Takigawa 2014). Although accurate data
regarding activity patterns and muscle mass are difficult
to obtain outside specialized research settings (Kim
et al. 2002), the results obtained here argue strongly
in favour of further research in this area.

Table 18 Comparison of the 20 % criterion results for cranial and postcranial variables

Females Males Combined sex

Mean (SD) Range Mean (SD) Range Mean (SD) Range

Cranial variables (n=12) 52.7 (2.3) 48–56 64.5 (5.0) 60–76 58.5 (2.7) 56–64

PC variables (n=19) 62.1 (17.5) 52–80 56.5 (6.2) 40–65 67.3 (10.2) 54–82

All variables 58.5 (14.4) 48–80 59.6 (6.9) 40–76 63.9 (9.2) 54–82
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Lastly, our results suggest that the way in which equations
are assessed for reliability may be problematic.When deriving
predictive equations, most studies refer to correlation coeffi-
cients for determining which variables will be the most appro-
priate (Steudel 1980; Ruff et al. 1991; Delson et al. 2000;
Spocter and Manger 2007, Niskanen and Junno 2009). The
assumption here is that the higher the correlation coefficient,
the better the variable relates to body mass and the better the
resulting predictive equation will be. However, Smith (1984:
155) has argued that “a high correlation coefficient does not
ensure that the corresponding regression will have good pre-
dictability”. This is particularly true when sample sizes are
small (Steudel 1985) and may explain the poor accuracy of
the equations generated in previous studies. For example,
using an interspecific sample of just five specimens, all but
one of Spocter and Manger’s (2007) 15 cranial variables were
associated with correlation coefficients (r) greater than 0.97.
With a sample size of 12, all 15 cranial variables used in Aiello
and Wood’s (1994) hominoid regressions had correlation co-
efficients greater than 0.73. On this basis, one would be led to
believe that cranial variables should be good predictors of
mass. However, this was not borne out by the present study
or other tests (Elliott et al. 2014).

In the present study, lower correlations did not necessarily
indicate poorer predictability. For example, in the combined-
sex sample, the correlation coefficient between femoral head
breadth (FHB) and mass was 0.40 (p<0.01) but 70 % of the
sample was estimated within ±20 % of known mass. In con-
trast, femoral neck breadth correlated with mass at r=0.43
(p<0.01), yet only 56 % of the sample was estimated within
±20 % of known mass. Interestingly, these correlations are
similar to those in Ruff et al. (1991), where femoral head
breadth and femoral neck breadth correlated with current
weight in the combined-sex sample at r=0.49 and r=0.53,
respectively. Although interspecific correlation coefficients
are expected to be higher than intraspecific ones (Smith
2002), these low correlation coefficients would argue against
femoral head breadth as the more appropriate estimator of
mass. Regardless, it is clear that correlation coefficients may
not be a reliable means of assessing the predictive competence
of an equation. While this point has been made before (Smith
1984) it appears to have had little impact on practice (e.g. Jung
et al. 2014; Eller et al. 2014).

As an alternative to correlation coefficients, authors like
Smith (2002) have argued in favour of assessing predictive
performance based on the smallest standard error of the esti-
mate (SEE). Indeed, SEEs of 0.11 and 0.09 were the basis for
the suggestion that orbital height (HORB) and orbital area
(ORBA) were the most reliable predictors of hominoid mass,
respectively (Aiello and Wood 1994). However, SEEs are
heavily influenced by sample size, with the distribution of
SEE values narrowing as n increases (Hennig and Cooper
2011). Under such conditions, lower SEEs may not result in

better predictability. In Aiello andWood’s (1994) case, ORBA
had a lower SEE, but estimated fewer individuals within
±20 % of known mass than HORB (50 vs. 63 %). With our
larger sample of known-mass individuals, the SEEs range was
narrower (0.09–0.11 in the combined-sex sample), but the
number of individuals estimated within ±20% of known mass
was considerably higher (54–82 %). Consequently, it appears
that SEEs may not be a sufficient means of assessing predic-
tive competence either.

To explore these issues further, we examined the relation-
ship between SEEs, correlation coefficients, absolute predic-
tion errors, and the percentage of individuals who are estimat-
ed within ±20 % of their known mass. Table 19 shows that
although there is a reasonably strong inverse relationship be-
tween SEEs and the correlation coefficients for a given vari-
able, neither statistic is a good indicator of estimation compe-
tence as evaluated by the percentage difference from known
mass and the “±20 % criterion”. Thus, in the absence of a
known-mass sample, neither the correlation coefficient of
the variable nor the SEE of the regression equation is adequate
to determine the accuracy of the resulting estimate.
Consequently, in order to ensure a regression equation is reli-
able, one must start with accurately measured variables com-
bined with associated individual body masses. The resulting
equation should be tested on a known, independent sample,
ideally drawn from the same population as the reference group
(Giancristofaro and Salmaso 2007). Subsequent validation on
known-mass samples from other populations would then pro-
vide additional confidence and broader applicability. Without
these steps, equations cannot be adequately assessed for their
ability to estimate mass in unknown specimens. Even under
these conditions, only broad estimate ranges can be expected
and any inferences drawn from them must be made with
caution.

Conclusions

The results of this study support Smith’s (2002: 271) conten-
tion that body mass estimation is not the “simple matter” that
some researchers consider it to be. The majority of the cranial
and postcranial variables tested met the criteria for acceptance
as estimators of mass. In addition, most of the equations
returned lower rates of error than previously published

Table 19 Comparison of correlation with SEE combined-sex
calibration sample (n=203)

r2 |PE| 20 % criterion

Cranial variables −0.729 0.710 −0.054
PC variables −0.999 −0.001 −0.053
All variables −0.993 −0.182 0.022
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equations for the same variables. However, the acceptance
criteria used in the present study were lenient and the improve-
ments over earlier studies were generally modest. Given the
vagaries of taphonomy, uncertainties of sex attribution in frag-
mentary skeletal remains, and the difficulty (or worse, impos-
sibility) of ensuring a reference sample is appropriate for the
target specimen, these results suggests that body mass estima-
tion is fraught with more uncertainty than most applications
acknowledge. In addition, the attempt to derive more accurate
regression equations for estimating body mass revealed other
problems. Specifically, the variables currently favoured for
body mass estimation may not be the most reliable.
Furthermore, variables with a functional association to mass
(e.g. femoral head breadth) were not consistently better pre-
dictors than those without (e.g. orbital height), and the criteria
currently employed to evaluate predictive competence did not
assure accuracy. While some of the variables tested here show
promise as predictors of mass, further research using large
documented samples needs to be undertaken to address the
issues that have been identified.
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