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A N T H R O P O L O G Y

Technological complexity and combinatorial invention 
in small-scale societies
Marcus J. Hamilton1,2,3*, José Lobo4, Mark Collard5, Robert S. Walker6,7, Briggs Buchanan8

Technology plays a central role in all human societies, from foraging to industrial economies. However, techno-
logical solutions come with associated costs, and in small-scale societies, technological complexity reflects this 
trade-off between efficiency and resource constraints. Here, we analyze this trade-off and show a sublinear scal-
ing relationship between toolkit richness and tool part richness in ethnographic societies. This result indicates 
diminishing returns where each additional part contributes less to overall toolkit diversity. This scaling holds 
across diverse ecological and cultural contexts, suggesting a general principle of optimization in tool design. Eth-
nographic toolkits achieve their adaptability by reusing a core set of versatile parts and selectively incorporating 
more specialized parts. However, increasing richness also increases complexity, and complexity is costly. We for-
malize these dynamics within a combinatorial optimization framework and discuss the implications.

INTRODUCTION
All forms of life extract energy from their environments to support 
essential functions such as growth, maintenance, and reproduction. 
In human societies, this energy budget goes beyond supporting basic 
biological function to include meeting the combined demands of cul-
ture, infrastructure, and technology (1, 2). Achieving and improving 
well-being involves addressing numerous interconnected challenges 
about how best to allocate limited resources to achieve specific goals 
efficiently. Throughout evolutionary history, humans have relied on 
technology to solve these challenges (3–5). As technology requires 
energy to function, in turn, it has become indispensable for harness-
ing and generating energy. This symbiotic relationship has deep evo-
lutionary roots and is essential for both powering society and driving 
socioeconomic development.

Tools are tangible manifestations of technology, embodying the 
principles and knowledge that drive their creation and use. They 
serve as practical applications of technological advancements, en-
abling users to interact with and manipulate their environment 
more effectively. The ability to produce tools to solve problems, 
whether for cutting animal hides or building jet engines, is a funda-
mental aspect of human existence. This creative capacity has driven 
human development and innovation throughout history (6). Conse-
quently, a long-standing research goal in many disciplines is to un-
derstand the drivers of technological variation over time and space, 
the patterns of invention and innovation, and the spatiotemporal 
variation in technological complexity (7–16). By examining these 
factors, researchers aim to uncover the underlying mechanisms that 
have shaped technologies and their impact on society. Such an un-
derstanding is crucial for informing current debates about the con-
tinued role of technological change in propelling economic growth 
(16, 17). As researchers seek to identify the fundamental dynamics 

and contingencies that have influenced technological development 
over time and space, they often focus on how much of contempo-
rary technological change is uniquely the result of the Industrial 
Revolution. Furthermore, understanding the deeper evolutionary 
context of technological development can shed light on the potential 
impact of emerging technologies, such as generative artificial intel-
ligence (AI), on human development.

Archaeological evidence indicates that hominins have created 
tools for over three million years, as demonstrated by the simple 
stone tools found at Pliocene sites in East Africa (18, 19). Before the 
development of farming, all humans lived as hunter-gatherers for 
hundreds of thousands of years, the vast majority of the evolution-
ary history of Homo sapiens. Hence, hunting and gathering served 
as the socioeconomic framework for the crucial development of hu-
man social organization, cooperation, and cultural evolution that 
continue to influence contemporary societies. Over this time, tech-
nology played a vital adaptive role as humans developed tools and 
techniques for hunting, gathering, and processing food, not only 
improving efficiency over time but also fostering innovation and 
problem-solving skills. These technological developments were es-
sential for solving environmental challenges and laid the foundation 
for the diversity of societies seen in the historic period.

A rich understanding of the dynamics of technological complexity in 
human society requires examining technological complexity within the 
context of ethnographic small-scale human societies, characterized by a 
wide diversity of nonindustrial, subsistence-level populations engaged 
in foraging or farming. These societies provide numerous valuable cases 
from which we can gain insight into the fundamental dynamics of tech-
nological evolution. In addition, by studying technological complexity 
in small-scale societies, we get to observe how these dynamics play out 
in nonmarket-driven contexts, where decisions are not driven by mar-
ket forces but by problem solving and fitness maximization.

This study focuses on understanding the factors that drive varia-
tion in the composition of technology among small-scale human 
societies (Fig. 1). We define technological complexity as the struc-
tural relationship between the number of unique tools in a toolkit, 
the components that compose those tools, and their ecological 
context—the environmental problems that technology solves.

One challenge all societies face is to find the optimal combination 
of tools that simultaneously minimizes the uncertainty in human- 
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environment interactions and minimizes costs. Our research focuses 
on how small-scale societies manage to balance the benefits of tech-
nology with the economic and material costs associated with inven-
tion, maintenance, and diversity. Specifically, we investigate the 
factors that drive the relationship between technological complexity 
and the optimization of costs and benefits in human-environment 
interactions. Specifically, tools cost time and energy that could oth-
erwise be spent on other adaptively important behaviors. Our goal 
is twofold: to explain technological change in small-scale societies 
and to gain fundamental insights into how technologies are con-
structed in these societies. By doing so, we aim to establish a formal 
framework and an empirically robust baseline for understanding 
the evolutionary context from which human technological com-
plexity emerged and increased.

The nature of technological complexity
Anthropologists and archaeologists have documented remarkable 
variation in the technological complexity—the composition of tool-
kits in a society—of small-scale societies across space and time, and 
the causes of this diversity are the source of much debate (20–34). 
There are many ways “technological complexity” could be measured 
in a dataset. In this study, our measure is the relationship between 
the number of unique tools in a toolkit and the number of unique 
parts that are used in the manufacture of those tools. We define this 
more formally below.

We focus on subsistence tools, the technology used to facilitate 
extracting food resources from the environment, such as spears, nets, 
fishing weirs, harpoons, small game traps, digging sticks, and so on. 
All environments are to some degree both dynamic and stochastic, 
varying in both productivity and predictability over time and space. 
Hence, all human-environment interactions involve uncertainty (35). 

Humans seek to minimize this uncertainty by building behavioral 
models from which to make predictions about the likely outcome of 
their implementation. Tools are the material interface of these strate-
gies; the physical structures engineered from matter to facilitate in-
teractions with the world. Technological solutions to problems of 
environmental uncertainty might include knowing how to excavate a 
tuber using a digging stick, killing an antelope with a dart, or trapping 
a fish in a stream with a weir. Thus, tools are adaptive inventions in 
material form that seek to solve the immediate problem of extracting 
resources, thus playing a central role in solving the broader meta-
problem of maximizing fitness.

The benefits of technology, however, come with unavoidable 
costs. Fundamentally, a society must balance the benefits of reduc-
ing environmental uncertainty with the costs of toolkit design, man-
ufacture, and maintenance. In subsistence societies, with limited 
access to resources, this optimization is particularly crucial as tech-
nology costs time and energy resulting in opportunity loss, and risk 
of failure is measured in the survival rates of offspring. This is be-
cause time and energy devoted to manufacturing and maintaining 
technology is time that could be devoted to other fitness-promoting 
tasks, such as childcare, foraging, or reproduction. Raw materials 
must be gathered, solutions designed and engineered, tools main-
tained, and the knowledge to manage all aspects of the technological 
repertoire needs to be learned by individuals and transmitted faith-
fully across generations. As a consequence, the increase in the diver-
sity and complexity of toolkits is constrained by the increased costs 
inherent in such an increase.

Here, we develop an optimization model of technological complex-
ity and the role it plays in reducing uncertainty in human-environment 
interactions. This model formalizes the benefits of reducing uncertain-
ty in the environment with the costs of tool use. We then parameterize 

Fig. 1. Ethnohistoric examples of subsistence related tools of varying complexity. (A) Tsimshian fish club (56); (B) Inuit stone hammer (57); (C) Inuit walrus harpoons 
(57); (D) Inuit bow (57); (E) Seri bone awl (58); (F) Tsimshian fish hook (56); (G) Seri bow, quiver, and arrow (58); (H) Menominee small game trap (59). All images are from 
the Bureau of American Ethnology and are in the public domain.
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this model using ethnographic data on the composition of toolkits 
used by small-scale hunter-gatherer and food-producing societies 
across the planet. We show that toolkit richness (the number of unique 
tools in a toolkit) scales sublinearly with component richness (the 
number of unique part types). This relationship holds regardless of the 
broad subsistence strategy (immediate-return system hunter-gatherer, 
delayed-return system hunter-gatherer, or farmer). We argue that the 
complexity of subsistence technology in small-scale societies follows 
this relationship as a response to the benefits of reducing uncertainty in 
a given environment and the costs associated with innovating new 
technology and maintaining that technology.

The model
To develop the context in which toolkits occur and the problems 
they solve, we build a minimal model of the environment, its sto-
chasticity, and the adaptive role technology plays in all human life-
styles, conditioned on its costs. These costs include the costs of 
acquiring raw materials, engineering new components, and main-
taining tools over their use-life. Here, the objective is to find the 
optimal toolkit that maximizes its utility while minimizing its costs. 
We treat the optimization involved as an instance of combinatorial 
optimization, that is, finding the optimal subset or arrangement of 
discrete elements from a finite set, where the objective is to mini-
mize (or maximize) a function subject to constraints (36).
Environmental uncertainty as a constraint space
The biophysical environments in which human societies are embedded—
and from which humans seek to extract energy efficiently in the 
form of plant and animal food resources—are inherently stochastic. 
Because food resource availability fluctuates through time and 
space, there is inherent uncertainty in all subsistence related human-
environment interactions. There is uncertainty at all environmental 
scales, from the location of individual prey animals to the seasonal-
ity of environments and so some of these scales of uncertainty are 
more amenable to reduction through technological intervention 
than others. We begin by modeling the environment as a constraint 
space C , composed of multiple dimensions each representing differ-
ent sources of variability

where VR is the variability in resource availability, VE is the envi-
ronmental variability (e.g., seasonal changes and climatic events), 
K  is the predation or other external risks, and E is the energy ex-
penditure required for resource acquisition or survival. Each di-
mension of C quantifies a specific type of uncertainty affecting 
survival and reproduction.

To capture the overall uncertainty in the environment, we define 
P(C) as the joint probability distribution P(C) = P

(

VR,VE,K ,E, …
)

 . 
Defining X as the set of all possible outcomes in the constraint 
space, X = {x1, x2, … , xn } , each x ∈ X represents a specific con-
figuration of VR,VE,K ,E, … , with an associated probability P(x) , 
which quantifies the likelihood of observing xi , given the probabilis-
tic structure of the constraint space.

Each dimension of the constraint space C has an associated 
uncertainty, defined as an entropy H(x) , and so H(C)=H

(

V
R

)

+  
H
(

V
E

)

+H(K) +H(E) + …, which quantifies the unpredictabil-
ity over all outcomes (i.e., an instance of a human-environment 
interaction)

where P(x) is the probability of an outcome x , given the constraints 
in C , and X is the set of all possible outcomes. The entropy H(C) 
quantifies the unpredictability in human-environment interactions, 
and higher entropy indicates greater uncertainty in these outcomes. 
The use of the entropy formalism to characterize uncertainty is a 
widely accepted approach in many scientific fields, and its use here 
highlights that uncertainty reduction necessitates increased infor-
mation, i.e., knowledge about the environment.
The toolkit and its components
The use of tools effectively reduces the uncertainty in the environ-
ment by providing reliable and efficient means to manipulate the 
environment. Tools enable users to perform tasks with greater preci-
sion and control, such as hunting, gathering, and food processing. 
This directly affects their ability to predict and manage environmen-
tal challenges. By enhancing the efficiency and effectiveness of these 
activities, tools help to stabilize resource acquisition and minimize 
the risks associated with environmental variability.

A toolkit is a collection of tool types T = { t1, t2, … , tn } , each 
designed to reduce uncertainty in specific dimensions of C . Each 
tool type ti ∈ T is a function that maps constraints to a real value 
representing its performance in reducing uncertainty

We then define toolkit richness Tn as the cardinality of the set T.
Individual tool types are constructed from the set of unique 

component parts P = {p1, p2, … , pn } Fig. 2. We define component 
part richness Pn as the cardinality of the set P . Each part pi ∈ P con-
tributes to the construction of tools and, indirectly, to uncertainty 
reduction. This means that a single tool type ti is composed of a sub-
set of all available parts, so ti ⊆ P , and so ∀ ti ∈ T , ti ⊆ P . Therefore, 
T = { ti ∣ ti ⊆ P, i = 1, 2, … ,T } ; that is to say that the toolkit T is 
composed of a suite of unique tool types, ti , each of which is com-
posed of unique component parts, pi , which, when combined, form 
the component part richness P.

In our dataset, a unique part, pi , is defined as “an integrated, 
physically distinct, and unique structural configuration that con-
tributes to the form of a finished artifact” (29). For example, a dig-
ging stick is composed of one unique part; a digging stick with a 
cylindrical weight is two parts; a walrus harpoon or a snare might be 
composed of dozens of parts. A unique tool type, ti , is “an extraso-
matic form that is removed from a natural context or manufactured 

C =
[

VR,VE, P,K , …
]

(1)

H(C) = −
∑

x∈X

P(x)logP(x)
(2)

ti:C→ ℝ (3)

A B

Fig. 2. Tool parts, types, and complexity. Panel (A) represents a toolkit comprised 
of seven individual tool types constructed from 20 unique parts with an average 
tool complexity of 2.9 parts per tool. Panel (B) represents a toolkit of 10 individual 
tool types constructed from 40 unique parts with an average tool complexity of 
four parts per tool. P

n
T
n
 , Y

T
.
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and is applied directly to obtain food” (29). A stone used for throw-
ing is a unique tool, as are arrows, bows, snares, traps, and harpoons. 
In farming societies, subsistence-related tools might include lassos, 
tethers, hoes, and sickles.
Tool construction
The upper bound of toolkit richness is set by the theoretical maxi-
mum number of tools, Tmax , that could be generated from the com-
binatorial possibilities of all subsets of all parts. If all possible subsets 
of all Pn unique parts resulted in a viable tool, then the total number 
of possible combinations is

where each part can either be included or excluded from a tool, lead-
ing to 2Pn subsets. This exponential growth reflects the combinatorial 
explosion of potential tool types as more parts become available. 
However, in practice, such exponential richness is never realized be-
cause of the variety of constraints discussed below. Although Tmax can 
grow exponentially, real-world toolkit richness is constrained by 
multiple factors: The actual number of functional tools produced by 
any combination of parts is a tiny fraction of the theoretical maximum.

While some tools are composed of a single component—such as 
a digging stick—composite tools are constructed from a subset of 
parts. Tools in small-scale societies typically involve no more than a 
few components ( m-sized subsets). For example, no single tool type 
will include all available component parts and so m≪ Pn . The num-
ber of such subsets is given by the binomial coefficient

which for large Pn and small m simplifies to

This polynomial growth is much slower than the exponential 
growth of Tmax , significantly reducing the actual number of tools.

However, even for limited subsets, the actual production of real-
ized tools from component parts is further restricted by many other 
factors. The material properties of the parts constrain the combina-
torial possibilities, as there are only so many ways in which wood, 
bone, stone, metal, and other components can be combined to pro-
duce a functional tool. It is also likely that the cultural norms of a 
society restrict the particular forms of certain tool types. For exam-
ple, there are many ways to construct a functional bow, but a given 
society will have particular traditions that limit the types of bow 
they manufacture (37–39). In addition, the ability to manufacture 
components will also be limited by the abundance and spatial avail-
ability of materials in the environment, and most combinations of 
even a small number of parts will not produce a functional tool. 
Moreover, societies may prioritize certain tools over others based 
not only on their utility but also on symbolic importance or other 
cultural beliefs and practices.

Incorporating these constraints, we express the relationship be-
tween toolkit richness Tn and part richness Pn in the general form

where β = dlnTn ∕dlnPn represents the elasticity of toolkit richness 
Tn with respect to part richness Pn. Equation 7 captures a range of 
multiplicative responses, with the value of β determining whether 

the relationship between part and types is superlinear ( β > 1 ) or 
sublinear ( β < 1).
Toolkit effectiveness
The contribution of a tool type ti to reducing uncertainty is then 
modeled by a reduction function ri(C)

with Hti
(C) denoting the entropy after applying the tool type ti . 

Here, the effectiveness of a tool type is explicitly the reduction in 
entropy of the outcome. We consider the simplest case where the 
overall effectiveness of a toolkit T in reducing uncertainty is given by

where ri(C) is the uncertainty reduction contributed by tool type ti , 
and wi is a weight representing the importance or relevance of ti in 
the given environmental context. That is to say, in Eq. 9, the overall 
effectiveness of a toolkit is simply the weighted sum of the effective-
ness of its individual components.

Each tool type ti may target specific dimensions of C . For exam-
ple, a fishing net reduces variability in resource availability ( VR ), a 
spear reduces predation risk ( K ), and a storage vessel reduces vari-
ability in environmental availability ( VE ). Thus, a toolkit’s effective-
ness RT (C) reflects the combined impact of tools across all relevant 
dimensions. Note that  Eq.  9 could be extended to consider more 
complicated situations where synergistic interactive effects on un-
certainty reductions may arise between tool types. For example, the 
combined use of fishing weirs and fishing spears may allow the har-
vesting of entirely new sources of aquatic resources on rivers, or the 
combined use of hunting nets and digging tools might provide ac-
cess to new types of terrestrial prey such as fossorial mammals.
Invention and maintenance costs
We assume that the costs of inventing and maintaining a new tool 
type are related to the number of constituent parts that make up the 
form, an assumption justified by several considerations. More parts 
generally mean more complexity, which requires additional time 
and effort to design, assemble, and maintain the tool. Each part 
needs to be sourced, manufactured, and integrated into the final 
product. Each component of a tool type requires specific materials 
and resources. The more parts there are, the greater the variety and 
quantity of resources needed, which can increase costs. Tools with 
more parts are likely to require more frequent maintenance and re-
pairs. Each part can wear out or break, necessitating replacements 
or repairs, which adds to the overall cost. Creating and maintaining 
complex tools often require specialized skills and knowledge. Learn-
ing the skills to handle these tasks can be costly and time-consuming.

By assuming that the costs of inventing and maintaining a tool 
type in the toolkit are proportional to its number of unique parts, 
C ∝ P , a significant constraint is introduced on how societies bal-
ance the benefits of increasing toolkit richness, Tn , with the econom-
ic, cognitive, and material costs of increasing part richness, Pn . This 
refinement to the relationship Tn ∝ P

β
n highlights a trade-off be-

tween technological richness and resource use. If the cost of initially 
inventing and then maintaining a tool type is simply proportional to 
the number of unique parts, the total cost of a toolkit can be ex-
pressed as

Tmax = 2Pn (4)

Trestricted =

(

Pn

m

)

=
Pn !

m !
(

Pn−m
)

!
(5)

Trestricted ∼
Pm
n

m !
(6)

Tn ∝ Pβ
n (7)

ri(C) = H(C) −Hti
(C) (8)

RT (C) =

n
∑

i=1

wiri(C) (9)

C = λPn (10)
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where λ is a proportionality constant representing the per-unit cost 
of innovating, maintaining, or integrating a new part.

The net utility U of increasing part richness can be specified as 
the difference between the benefits derived from toolkit richness 
and the associated costs

Substituting the scaling relationship for Tn

and so the utility is clearly dependent on the values of β and λ.
Optimal part richness
The utility to be optimized is the balance between the adaptive ben-
efits of tools in reducing environmental uncertainty and the costs 
associated with inventing, maintaining, and diversifying those tools. 
To maximize utility, societies must balance these competing effects 
by selecting an optimal P∗ , the part richness that maximizes U . The 
optimal P∗ can be found by differentiating U with respect to P and 
setting the derivative to zero

Differentiating and solving for optimal part richness P∗ yields

Equation  14 shows that the optimal part richness decreases as 
the cost of invention, λ , increases, reflecting a trade-off where high-
er costs limit technological diversity.

The ultimate goal of a toolkit is to minimize overall environmen-
tal uncertainty while accounting for costs and constraints. Combin-
ing the results derived above, we find that the optimal toolkit T∗

n
 is 

defined as the objective function

where HT (C) is the residual uncertainty after applying the toolkit Tn , 
CT is the total cost of the toolkit, including material, cognitive, and 
maintenance costs, and λ is a weighting factor balancing uncertainty 
reduction and invention cost. A higher λ places greater emphasis on 

minimizing costs, while a lower λ allows for more focus on reducing 
uncertainty. The optimal toolkit T∗ minimizes the combined burden 
of residual uncertainty in human-environment interactions and the 
cost of toolkit production, with the weighting parameter λ deter-
mining the relative importance of cost versus uncertainty reduction.
Toolkit complexity and diversity
If the toolkit richness of a society is the result of cultural techno-
logical norms transmitted over generations, modified by decisions 
made by individuals within the society as they fine-tune their adap-
tive strategies to local environmental conditions over some window 
of time, we can assume Tn ≈ T∗

n
 , and so the observed toolkit rich-

ness is near some local optimum. Toolkit richness Tn(P) describes 
the number of tools in the toolkit as a function of the number of 
unique parts Pn . The richness reflects the potential complexity and 
adaptability of the toolkit

where β = dlnTn(P)∕dlnPn is the exponent, and c1 is a proportional-
ity constant reflecting technological, cultural, and ecological con-
straints. Rearranging Eqs. 10 and 16, we have an expression for the 
cost of richness

Defining average tool complexity YT as the ratio of parts Pn to 
toolkit richness Tn , or the average number of parts per tool, 
Pn ∕Tn , we find

Therefore, toolkit richness, complexity, costs, and their opti-
mal dynamics are largely dependent on the value of the param-
eter β . Having established the model, we now turn to estimating 
β from data.

RESULTS
We studied technological complexity across three broad categories of 
small-scale subsistence level societies (see  Fig.  3): (i) Immediate-
return hunter-gatherers are societies that consume food and other re-
sources soon after acquisition rather than storing them for long-term 
use. They typically rely on daily foraging of wild plants and animals, 
emphasizing mobility, egalitarianism, and sharing within the group. 

U = Tn − C (11)

U ∝ Pβ
n
− λPn (12)

dU

dPn
=

d

dPn

(

Pβ
n
−λPn

)

= 0 (13)

P∗ ∝

(

β

λ

)
1

1−β

(14)

T∗
n
= argmin

T

[

HT (C)+λCT

]

(15)

Tn(P) = c1P
β
n (16)

C
(

Tn

)

= λPn = c2T
1∕β
n (17)

Y
(

Tn

)

∝ T1−β
n (18)

Fig. 3. The global distribution of the 127 societies in the dataset. Spatial coverage is clustered and uneven, as is typical for anthropological datasets. We control for 
these effects statistically.
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Social organization tends to be flexible, with minimal hierarchy, as 
there is little accumulation of surplus to create wealth disparities. (ii) 
Delayed-return hunter-gatherers are societies that invest effort into 
acquiring, processing, and storing resources for future use, rather than 
consuming them immediately. They may engage in activities such as 
food preservation and territorial management and often construct du-
rable hunting and fishing equipment. These societies often exhibit 
more complex social structures, including inherited leadership roles 
and ownership rights over stored resources, leading to greater social 
inequality to immediate-return hunter-gatherers. (iii) The farmers we 
refer to here are traditional small-scale subsistence farming communi-
ties that primarily grow food for their own consumption rather than 
for large-scale trade or market exchange. They rely on low-intensity 
agricultural techniques, such as shifting cultivation, swidden (slash-
and-burn) farming, or small permanent plots, often supplemented by 
hunting, fishing, or gathering.

Figure 4 shows that immediate-return system hunter-gatherers 
consistently have the lowest values of toolkit richness, tool part rich-
ness, and average tool complexity. Farmers have rich and diverse 
toolkits, but the most complex technologies are found in delayed-
return system hunter-gatherers. This is because most of our sample 
of delayed-return system hunter-gatherers are from the Northwest 
Coast of North America where subsistence economies are particu-
larly diverse and seasonal.

However, our results are statistically independent of these three 
lifestyle groupings. Figure 4 shows that toolkit richness is a sublinear 
function of component part richness as

The results reported in Table 1 show that the fixed effect of 
lifestyle grouping is not significant, both in terms of the inter-
cept and the slope: The result summarized in Eq. 19 is common 
to small-scale societies, independent of whether groups are 
immediate-return system hunter-gatherers, delayed-return sys-
tem hunter-gatherers, or farmers, even after accounting for spa-
tial autocorrelation.

The sublinearity of Eq. 19 indicates the diminishing returns of 
technological richness to component part richness: Groups that 
have double the number of tool parts have subsistence toolkits that 
are on average only about 62% richer in terms of tools. This implies 
that functional tools are increasingly difficult to engineer from more 
parts, and while some groups have richer toolkits than others, this 
richness comes at an increasing cost and is increasingly rare. We 
return to this in Discussion.

We can also summarize these results in terms of average tool 
complexity, YT . Given β  =  0.7, average tool complexity increases 
with toolkit richness as

Doubling toolkit richness leads to tools that are, on average, 23% 
more complex. Or, alternatively, societies that diversify their tech-
nologies do so by recombining their component parts to generate 
more complex tools. Hence, diversity is not free; it comes at a 
steep cost.

A technology that seems locally optimal in one society may not be 
locally optimal in another and that difference comes at a cost. All 
adaptive solutions come at the price of time, energy, and opportunity 
costs, and so different adaptive strategies have different pay-offs. It is 
in this sense that there is no free lunch for technological diversity: 
Ostensibly, societies do not get to diversify their technologies for free.

DISCUSSION
The results we present here show that the technologies of small-scale 
societies are shaped by a dynamic interplay of invention, resource 
limitations, and problem solving. This relationship is captured by 
the diminishing returns of toolkit richness Tn , the number of dis-
tinct tools, with tool part richness Pn , the number of unique compo-
nents available for construction. We show across a global sample of 
127 small-scale societies a relationship of Tn ∝ P0.7

n
 , indicating a 

sublinear growth regime that reflects the constraints inherent to 
technological systems (Fig. 5).

Our model indicates that there is a considerable amount of infor-
mation encoded in the functional form of this relationship and in 
the value of the parameter β . The fact that we observe sublinearity 
(i.e., β < 1 ) indicates that as the number of unique tool parts increas-
es, the growth of toolkit richness slows. In other words, adding an 
additional tool type to the toolkit requires an even greater number 
of components. This pattern implies that the practicalities of design-
ing, engineering, and maintaining tools are shaped by factors such 
as material properties, material availability, design constraints, and 
opportunity costs, all of which place mounting constraints on the 
practical richness of toolkits. Although the theoretical potential for 
the combinations of parts is vast, only a small subset of those com-
binations is practically viable, resulting in the observed sublinear 
scaling.

Because technology is the material solution to reducing environ-
mental uncertainty or solving problems more generally, if there 

Tn

(

Pn
)

= c0P
0.7
n (19)

YT = c1T
0.3
n (20)

CBA

Fig. 4. Descriptive statistics of toolkit types, parts, and complexity. Violin plots of (A) toolkit types T
n
 , (B) parts P

n
 , and (C) average tool complexity Y

T
 . Farmers have the 

highest toolkit richness (A), whereas delayed-return system hunter-gatherers have the most complex technologies (C). Vertical bars represent statistically significant 
pairwise Wilcoxon tests at the 95% confidence level where ∗∗∗P < 0.001 and ∗∗P < 0.01.
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were no costs associated with richness, toolkits should be designed 
to be rich enough to address all environmental uncertainties. In 
such a scenario, for any environmental problem, there would be a 
corresponding technological solution. However, in reality, tradi-
tional technologies face numerous constraints that limit the effec-
tiveness of a toolkit. These constraints include the availability of 
resources, the complexity of the environment, and the economic 
and material costs of creating and maintaining rich toolkits. Our 
model details these trade-offs and demonstrates empirically how 
they manifest across different societies. Specifically, we show how 
small-scale societies balance the adaptive advantages of technology 
with the economic and material costs of invention, maintenance, 
and diversity. By examining these trade-offs, we aim to gain funda-
mental insights into the construction of technologies in small-scale 
societies and establish a principled framework for understanding 
the evolutionary context from which human technological com-
plexity emerged.

The diminishing returns indicated by the sublinear scaling sug-
gest that small-scale societies prioritize functionality, efficiency, and 
robustness in the design of their subsistence toolkits. While a hand-
ful of versatile parts might form the basis of the majority of tools 
across this sample of small-scale societies, additional parts tend to 
be either highly specialized or redundant. Such specialization likely 
emerges in response to complex ecological niches, where new tools 
are required to solve specific problems, such as intercepting, har-
vesting, and processing locally specific food resources. Despite the 
need for specialization, most technological systems in small-scale 
societies appear to be optimized for efficiency, flexibility, and adapt-
ability by relying on a core set of reusable parts.

Fig. 5. The scaling relationship of toolkit richness and part richness. Toolkit 
richness T

n
 as a function of part richness P

n
 across the three lifestyle types, 

immediate-return systems hunter-gatherers (red), delayed-return system hunter-
gatherers (blue), and farmers (green). Slopes range between 0.67 and 0.71. Fitted 
straight lines are ordinary least squares regression models but see Table 1 for full 
results from the mixed effects model. These data show the remarkably tight sublin-
ear relationship between toolkit richness and tool part richness, indicating dimin-
ishing returns. R2, coefficient of determination.

Table 1. Results of the spatially explicit mixed model scaling of toolkit complexity in small-scale societies. Imm. Ret., immediate-return; Del. Ret., 
delayed-return. Cond.s.e., conditional standard error.

Fixed effects Dependent variable

lnT
n

Cond.s.e. t value

  lnP
i
   0.71  0.03779  18.85884

  GImm.Ret.forager   0.004278  0.16434  0.02603

  GDel.Ret.forager   −0.354535  0.26915 ﻿−1.31724

  GFarmer   −0.043120  0.24807 ﻿−0.17382

  lnP
i
   : GDel.Ret.forager   0.054362  0.06063  0.89663

  lnP
i
   : GFarmer   0.058240  0.06344  0.91808

﻿Random effects﻿ ﻿ ﻿ ﻿

  ν   0.1543916 ﻿ ﻿

  ρ   0.0163354 ﻿ ﻿

  λ   0.04262 ﻿ ﻿

﻿Residual variance﻿ ﻿ ﻿ ﻿

  ϕ   0.00468066 ﻿ ﻿

﻿Likelihood values﻿ ﻿ ﻿ ﻿

LogL 44.73024 ﻿ ﻿

 Re.logL 32.20775 ﻿ ﻿

 Observations 127 ﻿ ﻿

 Pseudo R  2  ﻿ 0.92 ﻿ ﻿
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Our model develops the perspective that toolkits are material com-
ponents of behavioral strategies that help societies reduce environ-
mental unpredictability in their interactions with the environment. 
Each tool type contributes to reducing some dimension of uncertain-
ty, and the collective effectiveness of the toolkit is a result of the inte-
grated contributions of its individual components. The diminishing 
returns of adding more tools, as evidenced by the observed scaling, 
suggest that while toolkits are designed to address the most significant 
environmental challenges, they also incorporate overlapping func-
tionalities to ensure robustness in the face of stochastic environments.

The generality of the observed scaling relationship across differ-
ent socioeconomic lifestyles suggests that the principles governing 
technological diversity are deeply embedded in the constraints of 
human cognition, material availability, and social organization. 
The consistency of the scaling exponent across different types of 
small-scale societies—such as hunter-gatherers and small-scale 
food producers—further underscores that toolkit construction is 
primarily driven by universal principles of cost-efficiency rather 
than cultural idiosyncrasies.

However, technological invention and innovation (that is, adop-
tion) are costly, and small-scale societies must weigh these costs 
against the potential benefits of increasing toolkit richness. The in-
clusion of costs ( C ∝ P ) in the model helps explain why societies 
cannot expand part richness indefinitely. Instead, the optimal part 
richness ( P∗ ) is determined by the trade-off between the diminish-
ing returns of adding new tools and the costs associated with inven-
tion. High invention costs lead societies to maximize the utility of 
each part, which is reflected in the sublinear relationship, where 
most of the toolkit richness comes from reusing a small number of 
versatile parts. The implication here is that the optimal part richness 
changes with the costs. If societies suddenly gain access to new ideas 
and new raw materials, the optimal tool part richness will likely 
change. Similarly, this model suggests that as tool part manufactur-
ing becomes more standardized, costs are reduced, and so increased 
technological complexity can be driven not just by the need to solve 
more problems (i.e., necessity being the mother of invention) but by 
the reduced cost of doing so.

Understanding the drivers of technological variation of tradi-
tional small-scale societies across the world is an important focus of 
anthropological and archaeological research (29,  40). The causes 
underlying the creation of toolkit variation have been the subject of 
intensive research through the development of models (26, 41–47) 
and the analysis of toolkit structure in relation to possible causal 
drivers (20–34, 40). This latter set of studies focuses on identifying 
drivers of toolkit richness and complexity through correlational ob-
servations. From these analyses, two main primary drivers have 
emerged. One is environmental risk (20–25); the other is population 
size and connectedness (22, 26, 27, 45). Here, we have taken a differ-
ent approach. Rather than trying to identify the primary drivers of 
complexity, our study has investigated the generating mechanisms, 
the ultimate function of technology, and the optimization that re-
sults. The foundational assumption of the model presented here is 
that the combination and recombination of existing tools is a prin-
cipal generator of technological novelty. Our model shows that there 
are features of toolkit structure—features not recognized in previ-
ous studies—that constrain the combinatorial process.

Our study has broader implications for understanding the evolu-
tion of technological complexity in both prehistoric and modern 
contexts. The relationships governing toolkit richness and part richness 

highlight the inherent constraints of technological invention. These 
constraints are as relevant to the subsistence tools of small-scale societ-
ies as they are to the complex technologies in industrialized economies. 
While technological invention and innovation are never free, the social 
and biophysical contexts in which human creativity can be expressed—
along with their incentives—have greatly changed over time.

In nonindustrial societies, the invention of new tools is often driven 
by immediate practical needs and limited by the availability and prop-
erties of local materials. Inventions were typically incremental, build-
ing on existing technologies within small, dispersed social groups. 
Moreover, invention is relatively rare as technological traditions em-
phasize reliability, predictability, and resilience over generations, with a 
strong reliance on inherited traditional knowledge and cultural trans-
mission (48–50). In contrast, the rate of invention, novelty, and creativ-
ity in industrialized societies benefits from advanced scientific 
knowledge, global communication networks, markets, and sophisti-
cated manufacturing technologies (6). If combinatorial search in a 
space of technological opportunities is a common source of techno-
logical novelty across time, then what accounts for the combinatorial 
explosion that characterizes modern economic development? It seems 
likely that the main difference between inventing new tools in nonin-
dustrial and industrial societies lies in the scale, complexity, and re-
sources available for invention, particularly the energy available for 
expanding technological complexity.

The efficiency and adaptability observed in small-scale toolkits 
provide valuable insights into the dynamics of technological diver-
sity, invention costs, and the optimization strategies used by societies 
to balance functionality, complexity, and resource use. By examining 
these dynamics, we can better understand how societies have his-
torically managed the trade-offs between technological innovation 
and resource constraints. This understanding is crucial for contem-
porary technological development, as it highlights the importance of 
optimizing toolkits to meet human needs while managing costs and 
resource limitations.

Whether humanity can continue to benefit from the “combinato-
rial explosion of knowledge” as a principal driver of socioeconomic 
development depends on how effectively these constraints are man-
aged and relaxed. This can be achieved through the development of 
new technologies and innovative social arrangements that enhance 
the efficiency and sustainability of technological advancements. 
Current concerns about the voracious consumption of electricity by 
data centers and generative AI (which operates by searching for so-
lutions in a vast combinatorial space of words, phrases, and con-
texts) serve as a reminder of the energy requirements of invention.

MATERIALS AND METHODS
Materials
We compiled data on toolkits from previously published studies that 
examined the technology used by 127 small-scale societies in terms 
of the number of distinct tools and tool parts in their subsistence 
toolkits (22,  23,  29,  51–53). Our coverage is global but uneven, 
which we control for statistically (see Fig. 3). Two of the studies re-
corded toolkit data from 35 hunter-gatherer groups (23) and 45 
small-scale food-producing groups (22, 24), including populations 
from Africa, Asia, the Americas, and Oceania. One of the studies 
includes 21 populations from the Northwest Coast region of North 
America (51), and the other regional includes 17 Australian Aborig-
inal groups (53). In the few cases of overlap in these datasets when 
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the same group was recorded in different studies, we used the data 
from the most recent source. All data needed to evaluate the conclu-
sions in the paper are available at (54).

We chose these four datasets specifically as they are consistent in 
their use of Oswalt’s method of counting tools and tool parts (29, 40). 
Oswalt devised two measures of toolkit structure, the number of 
“subsistants” and “technounits,” to make replicable, quantitative 
comparisons of toolkits used by different groups. We refer to subsis-
tants in this study simply as tools. Examples of subsistants or tools 
include wooden club, spear, bow, fish lure, pitfall, and snare (20, 40). 
Oswalt defined a technounit as an “integrated, physically distinct, 
and unique structural configuration that contributes to the form of 
a finished artifact” (29); in other words, technounits are the unique 
parts of a tool. For example, a single tool, such as a spear can be 
made of three parts—a shaft, a barbed point, and a binder—or if the 
spear also has an attachment line and float it will have five parts.

Statistical methods
To measure the relationships between tool types and tool parts across 
groups of differing subsistence economies and geographies, we use a 
spatially explicit mixed effects model, implemented in R using the 
spaMM package (55). These models control for spatial autoregres-
sion by modeling spatial effects as a random variable. We also intro-
duce three broad classes of socioeconomic lifestyle as a fixed effect; 
immediate-return system hunter-gatherer, delayed-return system 
hunter-gatherers, and farmers. These fixed effects were allowed to 
interact with technological complexity. This is necessary as these cat-
egories of lifestyles encompass a broad range variation in subsistence 
economy, landscape mobility, sociopolitical organization, settlement 
patterns, and so on. Hence, it may be the case that technological 
complexity manifests differently across these categories. The model 
has the following analytical form

where lnTn,i is the toolkit richness, the response variable for obser-
vation i; lnPn,i is the component part richness, and lnGi is the fixed 
effect of lifestyle type; these are the predictor variables for observa-
tion i; β1, β2 , and β3 are fixed effect coefficients associated with the 
predictors and their interaction; Zi is a random effect representing 
the spatial correlation modeled using the Matérn covariance func-
tion, incorporating spatial coordinates of longitude and latitude; 
and ϵi is the residual error term for observation i.

REFERENCES AND NOTES
	 1.	 M. J. Hamilton, O. Burger, R. S. Walker, Human Ecology (John Wiley & Sons Ltd., 2012), 

chap. 20, pp. 248–257.
	 2.	 W. R. Burnside, J. H. Brown, O. Burger, M. J. Hamilton, M. Moses, L. M. A. Bettencourt, 

Human macroecology: Linking pattern and process in big-picture human ecology.  
Biol. Rev. Camb. Philos. Soc. 87, 194–208 (2012).

	 3.	 S. L. Kuhn, Evolution of Paleolithic Technology, Cambridge Studies in Archaeology 
(Routledge, 2019).

	 4.	L . Barham, From Hand to Handle: The First Industrial Revolution (Oxford Univ. Press, 2013).
	 5.	 J. Paige, C. Perreault, 3.3 million years of stone tool complexity suggests that cumulative 

culture began during the middle pleistocene. Proc. Natl. Acad. Sci. U.S.A. 121, 
e2319175121 (2024).

	 6.	 J. Mokyr, The Lever of Riches: Technological Creativity and Economic Progress  
(Oxford Univ. Press, 1990).

	 7.	 W. Arthur, The Nature of Technology: What It Is and How It Evolves (Simon and Schuster, 
2009).

	 8.	 G. Basalla, The Evolution of Technology (Cambridge Univ. Press, 1988).
	 9.	 M. Changizi, Universal scaling laws for hierarchical complexity in languages, organisms, 

behaviors and other combinatorial systems. J. Theor. Biol. 211, 277 (2001).

	 10.	 M. Changizi, M. McDannald, D. Widders, Scaling of differentiation in networks: Nervous 
systems, organisms, ant colonies, ecosystems, businesses, universities, cities, electronic 
circuits, and legos. J. Theor. Biol. 218, 215–237 (2002).

	 11.	 S. Gilfillan, The Sociology of Invention (Follett, 1935).
	 12.	 H. Petroski, The Evolution of Useful Things: How Everyday Artifacts–From Forks and Pins to 

Paper Clips and Zippers–Came to Be as They Are (Vintage Press, 1992).
	 13.	 B. Pfaffenberger, Social anthropology of technology. Ann. Rev. Anthropol. 21, 491–516 

(1992).
	 14.	 J. Schumpeter, The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, 

Interest, and the Business Cycle, Translated by R. Opie (1949) (Harvard Univ. Press, 1934).
	 15.	 M. Steel, W. Hordijk, S. Kauffman, Dynamics of a birth–death process based on 

combinatorial innovation. J. Theor. Biol. 491, 110187 (2020).
	 16.	 H. Youn, D. Strumsky, L. Bettencourt, J. Lobo, Invention as a combinatorial process: 

Evidence from us patents. J. R. Soc. Interf. 12, 20150272 (2015).
	 17.	 P. Romer, Endogenous technological change. J. Pol. Econ. 98, S71–S102 (1990).
	 18.	 S. Harmand, J. E. Lewis, C. S. Feibel, C. J. Lepre, S. Prat, A. Lenoble, X. Boës, R. L. Quinn,  

M. Brenet, A. Arroyo, N. Taylor, S. Clément, G. Daver, J.-P. Brugal, L. Leakey, R. A. Mortlock,  
J. D. Wright, S. Lokorodi, C. Kirwa, D. V. Kent, H. Roche, 3.3-million-year-old stone tools 
from lomekwi 3, west turkana, kenya. Nature 521, 310–315 (2015).

	 19.	E . Hovers, D. Braun, eds., Interdisciplinary Approaches to the Oldowan  
(Springer Science & Business Media, 2009).

	 20.	 M. Collard, M. Kemery, S. Banks, Causes of toolkit variation among hunter-gatherers:  
A test of four competing hypotheses. Can. J. Archaeol. 29, 1–19 (2005).

	 21.	 M. Collard, B. Buchanan, J. Morin, A. Costopoulos, What drives the evolution of 
hunter-gatherer subsistence technology? a reanalysis of the risk hypothesis with data 
from the pacific northwest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 1129–1138 (2011).

	 22.	 M. Collard, A. Ruttle, B. Buchanan, M. O’Brien, Risk of resource failure and toolkit variation 
in small-scale farmers and herders. PLOS ONE 7, e40975 (2012).

	 23.	 M. Collard, B. Buchanan, M. O’Brien, Population size as an explanation for patterns in the 
paleolithic archaeological record: More caution is needed. Curr. Anthropol. 54, S388–S396 
(2013).

	 24.	 M. Collard, A. Ruttle, B. Buchanan, M. O’Brien, Population size and cultural evolution in 
nonindustrial food-producing societies. PLoS ONE 8, e72628 (2013).

	 25.	 M. Collard, B. Buchanan, M. O’Brien, J. Scholnick, Risk, mobility or population size? Drivers 
of technological richness among contact-period western north american hunter-
gatherers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120412 (2013).

	 26.	 J. Henrich, Demography and cultural evolution: How adaptive cultural processes can 
produce maladaptive losses—The Tasmanian case. Am. Antiq. 69, 197–214 (2004).

	 27.	 M. Kline, R. Boyd, Population size predicts technological complexity in oceania.  
Philos. Trans. R. Soc. Lond. B Biol. Sci. 277, 2559–2564 (2010).

	 28.	 A. J. Osborn, Folsom Lithic Technology: Explorations in Structure and Variation, D. S. Amick, 
Ed. (International Monographs in Prehistory, 1999), pp. 188–213.

	 29.	 W. Oswalt, An Anthropological Analysis of Food-Getting Technology (Wiley, 1976).
	 30.	D . Read, Tasmanian knowledge and skill: Maladaptive imitation or adequate technology? 

Am. Antiq. 71, 164–184 (2006).
	 31.	D . Read, An interaction model for resource implement complexity based on risk and 

number of annual moves. Am. Antiq. 73, 599–625 (2008).
	 32.	 M. Shott, Technological organization and settlement mobility: An ethnographic 

examination. J. Anthropol. Res. 42, 15–51 (1986).
	 33.	 R. Torrence, Hunter-Gatherer Economy in Prehistory: A European Perspective, G. Bailey, Ed. 

(Cambridge Univ. Press, 1983), pp. 11–22.
	 34.	 R. Torrence, Time, Energy and Stone Tools, R. Torrence, Ed. (Cambridge Univ. Press, 1989), 

pp. 57–66.
	 35.	 B. Fitzhugh, Risk and invention in human technological evolution. J. Anthropol. Archaeol. 

20, 125–167 (2001).
	 36.	C . H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity 

(Courier Corporation, 1998).
	 37.	L . E. Bartram Jr, Projectile Technology (Springer, 1997), pp. 321–343.
	 38.	 J. A. Harris, R. Boyd, B. M. Wood, The role of causal knowledge in the evolution of 

traditional technology. Curr. Biol. 31, 1798–1803.e3 (2021).
	 39.	 H. Pontzer, D. A. Raichlen, T. Basdeo, J. A. Harris, A. Z. P. Mabulla, B. M. Wood, Mechanics of 

archery among hadza hunter-gatherers. J. Archaeol. Sci. Rep. 16, 57–64 (2017).
	 40.	 W. Oswalt, Habitat and Technology: The Evolution of Hunting (Holt, Rinehart, and Winston, 

1973).
	 41.	 Y. Kobayashi, K. Aoki, Innovativeness, population size and cumulative cultural evolution. 

Theor. Popul. Biol. 82, 38–47 (2012).
	 42.	 O. Kolodny, N. Creanza, M. Feldman, Evolution in leaps: The punctuated accumulation 

and loss of cultural innovations. Proc. Natl. Acad. Sci. U.S.A. 112, E6762 (2015).
	 43.	 A. Mesoudi, Variable cultural acquisition costs constrain cumulative cultural evolution. 

PLOS ONE 6, e18239 (2011).
	 44.	L . Premo, S. Kuhn, Modeling effects of local extinctions on culture change and diversity in 

the paleolithic. PLOS ONE 5, e15582 (2010).

lnTn,i =
(

β1 ⋅ lnPn,i
)

+
(

β2 ⋅ lnGi

)

+
(

β3 ⋅ lnPn,i ⋅ lnGi

)

+ Zi + ϵi (21)

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of T

exas San A
ntonio on Septem

ber 24, 2025



Hamilton et al., Sci. Adv. 11, eadv6153 (2025)     24 September 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

10 of 10

	 45.	 S. Shennan, Demography and cultural innovation: A model and its implications for the 
emergence of modern human culture. Cam. Archaeol. J. 11, 5–16 (2001).

	 46.	 K. Aoki, L. Lehmann, M. W. Feldman, Rates of cultural change and patterns of cultural 
accumulation in stochastic models of social transmission. Theor. Popul Biol. 79, 192–202 
(2011).

	 47.	L . Lehmann, K. Aoki, M. W. Feldman, On the number of independent cultural traits 
carried by individuals and populations. Philos. Trans. R. Soc. B Biol. Sci. 366, 424–435 
(2011).

	 48.	 P. Jordan, Technology as Human Social Tradition: Cultural Transmission Among 
Hunter-Gatherers, vol. 7 (Univ of California Press, 2014).

	 49.	 B. S. Hewlett, A. H. Boyette, S. Lew-Levy, S. Gallois, S. J. Dira, Cultural transmission among 
hunter-gatherers. Proc. Natl. Acad. Sci. U.S.A. 121, e2322883121 (2024).

	 50.	 B. Buchanan, M. J. Hamilton, The Oxford Handbook of Archaeological Network Research 
(Oxford Univ. Press, 2023), p. 459.

	 51.	 A. Allan, thesis, Simon Fraser University (2019).
	 52.	L . Satterthwait, thesis, University of California at Los Angeles (1979).
	 53.	L . Satterthwait, Aboriginal australia: The simplest technologies?  

Archaeol. Phys. Anthropol. Oceania 15, 153 (1980).
	 54.	 M. Hamilton, J. Lobo, M. Collard, R. S. Walker, B. Buchanan, Data from: Technological 

complexity and combinatorial invention in small-scale societies, https://doi.org/10.5061/
dryad.jwstqjqm8 (2024). 

	 55.	 F. Rousset, J.-B. Ferdy, Testing environmental and genetic effects in the presence of 
spatial autocorrelation. Ecography 37, 781 (2014).

	 56.	 F. Boas, Tsimshian Texts, Texts in the Nass River dialect of the Tsimshian language 
(Government Printing Office, 1902), vol. 27, pp. 1–244.

	 57.	E . W. Nelson, The Eskimo about Bering Strait, Extract from the Eighteenth Annual Report of 
the Bureau of American Ethnology (US Government Printing Office, 1900), vol. 18,  
pp. 3–518.

	 58.	 W. J. McGee, The Seri Indians, Extract from report for 1895–96, includes comparative lexicology 
by J.N. B. Hewitt (pp. 299–344) (US Government Printing Office, 1898), vol. 17, pp. 1–344.

	 59.	 W. H. Holmes, Handbook of Aboriginal American Antiquities. Part I. Introductory: The Lithic 
Industries, Includes 223 figures, bibliography (pp. 368–372) and index (US Government 
Printing Office, 1919), vol. 60, pp. i–xvii, 1–380.

Acknowledgments 
Funding: M.C. is supported by the Canada Research Chairs Program (231256), the Canada 
Foundation for Innovation (36801), and the British Columbia Knowledge Development Fund 
(962-805808). Author contributions: M.J.H.: Writing—original draft, conceptualization, 
investigation, writing—review and editing, methodology, resources, funding acquisition, data 
curation, validation, supervision, formal analysis, software, project administration, and 
visualization. J.L.: Writing—original draft, conceptualization, investigation, writing—review 
and editing, methodology, data curation, formal analysis, and visualization. M.C.: 
Conceptualization, investigation, writing—review and editing, and data curation. R.S.W.: 
Writing—original draft, conceptualization, investigation, writing—review and editing, 
methodology, resources, data curation, validation, supervision, formal analysis, software, 
project administration, and visualization. B.B.: Writing—original draft, conceptualization, 
investigation, writing—review and editing, methodology, resources, funding acquisition, data 
curation, validation, supervision, formal analysis, software, project administration, and 
visualization. Competing interests: The authors declare that they have no competing 
interests. Data and materials availability: All data needed to evaluate the conclusions in the 
paper are present in the paper or have been deposited in Dryad (54).

Submitted 28 December 2024 
Accepted 26 August 2025 
Published 24 September 2025 
10.1126/sciadv.adv6153

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of T

exas San A
ntonio on Septem

ber 24, 2025

http://dx.doi.org/10.5061/dryad.jwstqjqm8
http://dx.doi.org/10.5061/dryad.jwstqjqm8

	Technological complexity and combinatorial invention in small-scale societies
	INTRODUCTION
	The nature of technological complexity
	The model
	Environmental uncertainty as a constraint space
	The toolkit and its components
	Tool construction
	Toolkit effectiveness
	Invention and maintenance costs
	Optimal part richness
	Toolkit complexity and diversity


	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	Materials
	Statistical methods

	REFERENCES AND NOTES
	Acknowledgments


